Mostrar el registro sencillo del ítem
dc.contributor.author | Sherfey, Jason S. | es_ES |
dc.contributor.author | Soplata, Austin E. | es_ES |
dc.contributor.author | Ardid-Ramírez, Joan Salvador | es_ES |
dc.contributor.author | Roberts, Erik A. | es_ES |
dc.contributor.author | Stanley, David A. | es_ES |
dc.contributor.author | Pittman-Polletta, Benjamin R. | es_ES |
dc.contributor.author | Kopell, Nancy J. | es_ES |
dc.date.accessioned | 2021-06-09T03:31:48Z | |
dc.date.available | 2021-06-09T03:31:48Z | |
dc.date.issued | 2018-03-15 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167602 | |
dc.description.abstract | [EN] DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community. | es_ES |
dc.description.sponsorship | This material is based upon research supported by the U.S. Army Research Office under award number ARO W911NF-12-R-0012-02, the U.S. Office of Naval Research under award number ONR MURI N00014-16-1-2832, and the National Science Foundation under award number NSF DMS-1042134 (Cognitive Rhythms Collaborative: A Discovery Network) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Neuroinformatics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Dynamical systems | es_ES |
dc.subject | Neural models | es_ES |
dc.subject | GNU octave | es_ES |
dc.subject | Neuroscience gateway | es_ES |
dc.subject | Graphical user interface | es_ES |
dc.subject | Code generation | es_ES |
dc.subject | Code:matlab | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | DynaSim: a MATLAB toolbox for neural modeling and simulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fninf.2018.00010 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARO//W911NF-12-R-0012-02/US/Event-Driven Game Theory for Predicting Dynamical Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1042134/US/Cognitive Rhythms Collaborative: A Discovery Network/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-16-1-2832/US/ONR MURI: Neural circuits underlying symbolic processing in primate cortex and basal ganglia/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Sherfey, JS.; Soplata, AE.; Ardid-Ramírez, JS.; Roberts, EA.; Stanley, DA.; Pittman-Polletta, BR.; Kopell, NJ. (2018). DynaSim: a MATLAB toolbox for neural modeling and simulation. Frontiers in Neuroinformatics. 12:1-15. https://doi.org/10.3389/fninf.2018.00010 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fninf.2018.00010 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.identifier.eissn | 1662-5196 | es_ES |
dc.identifier.pmid | 29599715 | es_ES |
dc.identifier.pmcid | PMC5862864 | es_ES |
dc.relation.pasarela | S\434974 | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | Army Research Office, EEUU | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.description.references | Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., & Mitra, P. P. (2010). Chronux: A platform for analyzing neural signals. Journal of Neuroscience Methods, 192(1), 146-151. doi:10.1016/j.jneumeth.2010.06.020 | es_ES |
dc.description.references | Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., … Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349-398. doi:10.1007/s10827-007-0038-6 | es_ES |
dc.description.references | Börgers, C., & Kopell, N. (2005). Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons. Neural Computation, 17(3), 557-608. doi:10.1162/0899766053019908 | es_ES |
dc.description.references | Ching, S., Cimenser, A., Purdon, P. L., Brown, E. N., & Kopell, N. J. (2010). Thalamocortical model for a propofol-induced -rhythm associated with loss of consciousness. Proceedings of the National Academy of Sciences, 107(52), 22665-22670. doi:10.1073/pnas.1017069108 | es_ES |
dc.description.references | Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009 | es_ES |
dc.description.references | Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3(S11), 1184-1191. doi:10.1038/81460 | es_ES |
dc.description.references | EatonJ. W. BatemanD. HaubergS. WehbringR. GNU Octave Version 4.2.0 Manual: A High-Level Interactive Language for Numerical Computations2016 | es_ES |
dc.description.references | Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems. doi:10.1137/1.9780898718195 | es_ES |
dc.description.references | FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. The Bulletin of Mathematical Biophysics, 17(4), 257-278. doi:10.1007/bf02477753 | es_ES |
dc.description.references | Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia, 2(4), 1430. doi:10.4249/scholarpedia.1430 | es_ES |
dc.description.references | Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., … Silver, R. A. (2010). NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail. PLoS Computational Biology, 6(6), e1000815. doi:10.1371/journal.pcbi.1000815 | es_ES |
dc.description.references | Goodman, D. (2008). Brian: a simulator for spiking neural networks in Python. Frontiers in Neuroinformatics, 2. doi:10.3389/neuro.11.005.2008 | es_ES |
dc.description.references | Goodman, D. F. M. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192-197. doi:10.3389/neuro.01.026.2009 | es_ES |
dc.description.references | Hines, M. L., & Carnevale, N. T. (1997). The NEURON Simulation Environment. Neural Computation, 9(6), 1179-1209. doi:10.1162/neco.1997.9.6.1179 | es_ES |
dc.description.references | Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764 | es_ES |
dc.description.references | Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., … Wang. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524-531. doi:10.1093/bioinformatics/btg015 | es_ES |
dc.description.references | Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569-1572. doi:10.1109/tnn.2003.820440 | es_ES |
dc.description.references | Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences, 97(4), 1867-1872. doi:10.1073/pnas.97.4.1867 | es_ES |
dc.description.references | Kramer, M. A., Roopun, A. K., Carracedo, L. M., Traub, R. D., Whittington, M. A., & Kopell, N. J. (2008). Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex. PLoS Computational Biology, 4(9), e1000169. doi:10.1371/journal.pcbi.1000169 | es_ES |
dc.description.references | Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130-141. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 | es_ES |
dc.description.references | Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., … Saria, A. (2011). Introducing the Human Brain Project. Procedia Computer Science, 7, 39-42. doi:10.1016/j.procs.2011.12.015 | es_ES |
dc.description.references | McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., … Hines, M. L. (2016). Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. Journal of Computational Neuroscience, 42(1), 1-10. doi:10.1007/s10827-016-0623-7 | es_ES |
dc.description.references | Meng, L., Kramer, M. A., Middleton, S. J., Whittington, M. A., & Eden, U. T. (2014). A Unified Approach to Linking Experimental, Statistical and Computational Analysis of Spike Train Data. PLoS ONE, 9(1), e85269. doi:10.1371/journal.pone.0085269 | es_ES |
dc.description.references | Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193-213. doi:10.1016/s0006-3495(81)84782-0 | es_ES |
dc.description.references | Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70(10-12), 1966-1969. doi:10.1016/j.neucom.2006.10.138 | es_ES |
dc.description.references | Stimberg, M., Goodman, D. F. M., Benichoux, V., & Brette, R. (2014). Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics, 8. doi:10.3389/fninf.2014.00006 | es_ES |
dc.description.references | Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast Rhythmic Bursting Can Be Induced in Layer 2/3 Cortical Neurons by Enhancing Persistent Na+Conductance or by Blocking BK Channels. Journal of Neurophysiology, 89(2), 909-921. doi:10.1152/jn.00573.2002 | es_ES |