- -

A Multi-Agent System for guiding users in on-line social environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multi-Agent System for guiding users in on-line social environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguado-Sarrió, Guillem es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.contributor.author García-Fornes, A es_ES
dc.contributor.author Espinosa Minguet, Agustín Rafael es_ES
dc.date.accessioned 2021-06-10T03:31:40Z
dc.date.available 2021-06-10T03:31:40Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167738
dc.description.abstract [EN] The present work is a study of the detection of negative affective or emotional states, the high-stress levels that people have using social network sites (SNSs), and the effect that this negative state or stress level has on the repercussions of posted messages. We aim to discover to what extent a user that has a state detected as negative by an analyzer (Sentiment analyzer and Stress analyzer) can affect other users and generate negative repercussions, and also determine whether it is more suitable to predict a future negative situation using different analyzers. We propose two different methods for creating a combined model of sentiment and stress, and we use them in our experimentation to discern which one is more suitable for predicting future negative situations that could arise from the interaction between users, and in what context. Additionally, we designed a Multi-Agent System (MAS) that integrates the analyzers to protect or advise users on a SNS. We have conducted this study to help build future systems that prevent negative situations where a user that has a negative state creates a repercussion in the SNS. This can help users avoid getting into a bad mood or help avoid privacy issues (e.g. a user that has a negative state posting information that the user does not really want to post). es_ES
dc.description.sponsorship This work was supported by the project TIN2017-89156-R of the Ministry of Economy, Industry and Competitiveness, Government of Spain. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multi-Agent System es_ES
dc.subject Social networks es_ES
dc.subject Sentiment analysis es_ES
dc.subject Stress analysis es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Multi-Agent System for guiding users in on-line social environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2020.103740 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Aguado-Sarrió, G.; Julian Inglada, VJ.; García-Fornes, A.; Espinosa Minguet, AR. (2020). A Multi-Agent System for guiding users in on-line social environments. Engineering Applications of Artificial Intelligence. 94:1-14. https://doi.org/10.1016/j.engappai.2020.103740 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engappai.2020.103740 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.relation.pasarela S\422128 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Aguado, G., Julian, V., & Garcia-Fornes, A. (2018). Towards Aiding Decision-Making in Social Networks by Using Sentiment and Stress Combined Analysis. Information, 9(5), 107. doi:10.3390/info9050107 es_ES
dc.description.references Alrubaian, M., Al-Qurishi, M., Alamri, A., Al-Rakhami, M., Hassan, M. M., & Fortino, G. (2019). Credibility in Online Social Networks: A Survey. IEEE Access, 7, 2828-2855. doi:10.1109/access.2018.2886314 es_ES
dc.description.references Buccafurri, F., Comi, A., Lax, G., & Rosaci, D. (2016). Experimenting with Certified Reputation in a Competitive Multi-Agent Scenario. IEEE Intelligent Systems, 31(1), 48-55. doi:10.1109/mis.2015.98 es_ES
dc.description.references Cao, Q., & Schniederjans, M. J. (2006). Agent-mediated architecture for reputation-based electronic tourism systems: A neural network approach. Information & Management, 43(5), 598-606. doi:10.1016/j.im.2006.03.001 es_ES
dc.description.references Christofides, E., Muise, A., & Desmarais, S. (2012). Risky Disclosures on Facebook. Journal of Adolescent Research, 27(6), 714-731. doi:10.1177/0743558411432635 es_ES
dc.description.references Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. doi:10.1145/2436256.2436274 es_ES
dc.description.references Fortino, G., Messina, F., Rosaci, D., & Sarné, G. M. L. (2018). Using trust and local reputation for group formation in the Cloud of Things. Future Generation Computer Systems, 89, 804-815. doi:10.1016/j.future.2018.07.021 es_ES
dc.description.references George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004 es_ES
dc.description.references Hu, M., Liu, B., Mining opinion features in customer reviews. In: AAAI, Vol. 4. pp. 755–760. es_ES
dc.description.references López-Ortega, O., & Villar-Medina, I. (2009). A multi-agent system to construct production orders by employing an expert system and a neural network. Expert Systems with Applications, 36(2), 2937-2946. doi:10.1016/j.eswa.2008.01.070 es_ES
dc.description.references Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament. Current Psychology, 14(4), 261-292. doi:10.1007/bf02686918 es_ES
dc.description.references O’Brien, P. D., & Nicol, R. C. (1998). BT Technology Journal, 16(3), 51-59. doi:10.1023/a:1009621729979 es_ES
dc.description.references Rincon, J. A., de la Prieta, F., Zanardini, D., Julian, V., & Carrascosa, C. (2017). Influencing over people with a social emotional model. Neurocomputing, 231, 47-54. doi:10.1016/j.neucom.2016.03.107 es_ES
dc.description.references Rosaci, D. (2007). CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents. Information Systems, 32(6), 793-825. doi:10.1016/j.is.2006.06.003 es_ES
dc.description.references Rosaci, D., & Sarnè, G. M. L. (2014). Multi-agent technology and ontologies to support personalization in B2C E-Commerce. Electronic Commerce Research and Applications, 13(1), 13-23. doi:10.1016/j.elerap.2013.07.003 es_ES
dc.description.references Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., & Fortino, G. (2020). Agent-based Internet of Things: State-of-the-art and research challenges. Future Generation Computer Systems, 102, 1038-1053. doi:10.1016/j.future.2019.09.016 es_ES
dc.description.references Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830. doi:10.1109/tkde.2015.2485209 es_ES
dc.description.references Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009 es_ES
dc.description.references Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. doi:10.1002/asi.21416 es_ES
dc.description.references Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2015). Developing educational materials about risks on social network sites: a design based research approach. Educational Technology Research and Development, 64(3), 459-480. doi:10.1007/s11423-015-9415-4 es_ES
dc.description.references Xie, W., & Kang, C. (2015). See you, see me: Teenagers’ self-disclosure and regret of posting on social network site. Computers in Human Behavior, 52, 398-407. doi:10.1016/j.chb.2015.05.059 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem