Mostrar el registro sencillo del ítem
dc.contributor.author | Aguado-Sarrió, Guillem | es_ES |
dc.contributor.author | Julian Inglada, Vicente Javier | es_ES |
dc.contributor.author | García-Fornes, A | es_ES |
dc.contributor.author | Espinosa Minguet, Agustín Rafael | es_ES |
dc.date.accessioned | 2021-06-10T03:31:40Z | |
dc.date.available | 2021-06-10T03:31:40Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0952-1976 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167738 | |
dc.description.abstract | [EN] The present work is a study of the detection of negative affective or emotional states, the high-stress levels that people have using social network sites (SNSs), and the effect that this negative state or stress level has on the repercussions of posted messages. We aim to discover to what extent a user that has a state detected as negative by an analyzer (Sentiment analyzer and Stress analyzer) can affect other users and generate negative repercussions, and also determine whether it is more suitable to predict a future negative situation using different analyzers. We propose two different methods for creating a combined model of sentiment and stress, and we use them in our experimentation to discern which one is more suitable for predicting future negative situations that could arise from the interaction between users, and in what context. Additionally, we designed a Multi-Agent System (MAS) that integrates the analyzers to protect or advise users on a SNS. We have conducted this study to help build future systems that prevent negative situations where a user that has a negative state creates a repercussion in the SNS. This can help users avoid getting into a bad mood or help avoid privacy issues (e.g. a user that has a negative state posting information that the user does not really want to post). | es_ES |
dc.description.sponsorship | This work was supported by the project TIN2017-89156-R of the Ministry of Economy, Industry and Competitiveness, Government of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Multi-Agent System | es_ES |
dc.subject | Social networks | es_ES |
dc.subject | Sentiment analysis | es_ES |
dc.subject | Stress analysis | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Multi-Agent System for guiding users in on-line social environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engappai.2020.103740 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Aguado-Sarrió, G.; Julian Inglada, VJ.; García-Fornes, A.; Espinosa Minguet, AR. (2020). A Multi-Agent System for guiding users in on-line social environments. Engineering Applications of Artificial Intelligence. 94:1-14. https://doi.org/10.1016/j.engappai.2020.103740 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engappai.2020.103740 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.relation.pasarela | S\422128 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Aguado, G., Julian, V., & Garcia-Fornes, A. (2018). Towards Aiding Decision-Making in Social Networks by Using Sentiment and Stress Combined Analysis. Information, 9(5), 107. doi:10.3390/info9050107 | es_ES |
dc.description.references | Alrubaian, M., Al-Qurishi, M., Alamri, A., Al-Rakhami, M., Hassan, M. M., & Fortino, G. (2019). Credibility in Online Social Networks: A Survey. IEEE Access, 7, 2828-2855. doi:10.1109/access.2018.2886314 | es_ES |
dc.description.references | Buccafurri, F., Comi, A., Lax, G., & Rosaci, D. (2016). Experimenting with Certified Reputation in a Competitive Multi-Agent Scenario. IEEE Intelligent Systems, 31(1), 48-55. doi:10.1109/mis.2015.98 | es_ES |
dc.description.references | Cao, Q., & Schniederjans, M. J. (2006). Agent-mediated architecture for reputation-based electronic tourism systems: A neural network approach. Information & Management, 43(5), 598-606. doi:10.1016/j.im.2006.03.001 | es_ES |
dc.description.references | Christofides, E., Muise, A., & Desmarais, S. (2012). Risky Disclosures on Facebook. Journal of Adolescent Research, 27(6), 714-731. doi:10.1177/0743558411432635 | es_ES |
dc.description.references | Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. doi:10.1145/2436256.2436274 | es_ES |
dc.description.references | Fortino, G., Messina, F., Rosaci, D., & Sarné, G. M. L. (2018). Using trust and local reputation for group formation in the Cloud of Things. Future Generation Computer Systems, 89, 804-815. doi:10.1016/j.future.2018.07.021 | es_ES |
dc.description.references | George, J. M., & Dane, E. (2016). Affect, emotion, and decision making. Organizational Behavior and Human Decision Processes, 136, 47-55. doi:10.1016/j.obhdp.2016.06.004 | es_ES |
dc.description.references | Hu, M., Liu, B., Mining opinion features in customer reviews. In: AAAI, Vol. 4. pp. 755–760. | es_ES |
dc.description.references | López-Ortega, O., & Villar-Medina, I. (2009). A multi-agent system to construct production orders by employing an expert system and a neural network. Expert Systems with Applications, 36(2), 2937-2946. doi:10.1016/j.eswa.2008.01.070 | es_ES |
dc.description.references | Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament. Current Psychology, 14(4), 261-292. doi:10.1007/bf02686918 | es_ES |
dc.description.references | O’Brien, P. D., & Nicol, R. C. (1998). BT Technology Journal, 16(3), 51-59. doi:10.1023/a:1009621729979 | es_ES |
dc.description.references | Rincon, J. A., de la Prieta, F., Zanardini, D., Julian, V., & Carrascosa, C. (2017). Influencing over people with a social emotional model. Neurocomputing, 231, 47-54. doi:10.1016/j.neucom.2016.03.107 | es_ES |
dc.description.references | Rosaci, D. (2007). CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents. Information Systems, 32(6), 793-825. doi:10.1016/j.is.2006.06.003 | es_ES |
dc.description.references | Rosaci, D., & Sarnè, G. M. L. (2014). Multi-agent technology and ontologies to support personalization in B2C E-Commerce. Electronic Commerce Research and Applications, 13(1), 13-23. doi:10.1016/j.elerap.2013.07.003 | es_ES |
dc.description.references | Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., & Fortino, G. (2020). Agent-based Internet of Things: State-of-the-art and research challenges. Future Generation Computer Systems, 102, 1038-1053. doi:10.1016/j.future.2019.09.016 | es_ES |
dc.description.references | Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830. doi:10.1109/tkde.2015.2485209 | es_ES |
dc.description.references | Thelwall, M. (2017). TensiStrength: Stress and relaxation magnitude detection for social media texts. Information Processing & Management, 53(1), 106-121. doi:10.1016/j.ipm.2016.06.009 | es_ES |
dc.description.references | Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. doi:10.1002/asi.21416 | es_ES |
dc.description.references | Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2015). Developing educational materials about risks on social network sites: a design based research approach. Educational Technology Research and Development, 64(3), 459-480. doi:10.1007/s11423-015-9415-4 | es_ES |
dc.description.references | Xie, W., & Kang, C. (2015). See you, see me: Teenagers’ self-disclosure and regret of posting on social network site. Computers in Human Behavior, 52, 398-407. doi:10.1016/j.chb.2015.05.059 | es_ES |