- -

Distributed Architecture to Integrate Sensor Information: Object Recognition for Smart Cities

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Distributed Architecture to Integrate Sensor Information: Object Recognition for Smart Cities

Show simple item record

Files in this item

dc.contributor.author Poza-Lujan, Jose-Luis es_ES
dc.contributor.author Posadas-Yagüe, Juan-Luis es_ES
dc.contributor.author Simó Ten, José Enrique es_ES
dc.contributor.author Blanes Noguera, Francisco es_ES
dc.date.accessioned 2021-06-12T03:32:46Z
dc.date.available 2021-06-12T03:32:46Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167838
dc.description.abstract [EN] Object recognition, which can be used in processes such as reconstruction of the environment map or the intelligent navigation of vehicles, is a necessary task in smart city environments. In this paper, we propose an architecture that integrates heterogeneously distributed information to recognize objects in intelligent environments. The architecture is based on the IoT/Industry 4.0 model to interconnect the devices, which are called smart resources. Smart resources can process local sensor data and offer information to other devices as a service. These other devices can be located in the same operating range (the edge), in the same intranet (the fog), or on the Internet (the cloud). Smart resources must have an intelligent layer in order to be able to process the information. A system with two smart resources equipped with different image sensors is implemented to validate the architecture. Our experiments show that the integration of information increases the certainty in the recognition of objects by 2-4%. Consequently, in intelligent environments, it seems appropriate to provide the devices with not only intelligence, but also capabilities to collaborate closely with other devices. es_ES
dc.description.sponsorship This research was funded by the Spanish Science and Innovation Ministry grant number MICINN: CICYT project PRECON-I4: "Predictable and dependable computer systems for Industry 4.0" TIN2017-86520-C3-1-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-86520-C3-1-R/ES/SISTEMAS INFORMATICOS PREDECIBLES Y CONFIABLES PARA LA INDUSTRIA 4.0/ es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart environment es_ES
dc.subject Smart sensors es_ES
dc.subject Distributed architectures es_ES
dc.subject Object detection es_ES
dc.subject Information integration es_ES
dc.subject Smart cities es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Distributed Architecture to Integrate Sensor Information: Object Recognition for Smart Cities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20010112 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE.; Blanes Noguera, F. (2020). Distributed Architecture to Integrate Sensor Information: Object Recognition for Smart Cities. Sensors. 20(1):1-18. https://doi.org/10.3390/s20010112 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20010112 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31878091 es_ES
dc.identifier.pmcid PMC6982956 es_ES
dc.relation.pasarela S\404737 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Munera, E., Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., & Noguera, J. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors, 15(8), 18080-18101. doi:10.3390/s150818080 es_ES
dc.description.references Cao, J., Song, C., Peng, S., Xiao, F., & Song, S. (2019). Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles. Sensors, 19(18), 4021. doi:10.3390/s19184021 es_ES
dc.description.references González García, C., Meana-Llorián, D., Pelayo G-Bustelo, B. C., Cueva Lovelle, J. M., & Garcia-Fernandez, N. (2017). Midgar: Detection of people through computer vision in the Internet of Things scenarios to improve the security in Smart Cities, Smart Towns, and Smart Homes. Future Generation Computer Systems, 76, 301-313. doi:10.1016/j.future.2016.12.033 es_ES
dc.description.references Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1-10. doi:10.1016/j.jii.2017.04.005 es_ES
dc.description.references Li, S., Xu, L. D., & Zhao, S. (2014). The internet of things: a survey. Information Systems Frontiers, 17(2), 243-259. doi:10.1007/s10796-014-9492-7 es_ES
dc.description.references Zdraveski, V., Mishev, K., Trajanov, D., & Kocarev, L. (2017). ISO-Standardized Smart City Platform Architecture and Dashboard. IEEE Pervasive Computing, 16(2), 35-43. doi:10.1109/mprv.2017.31 es_ES
dc.description.references Dastjerdi, A. V., & Buyya, R. (2016). Fog Computing: Helping the Internet of Things Realize Its Potential. Computer, 49(8), 112-116. doi:10.1109/mc.2016.245 es_ES
dc.description.references Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32. doi:10.1109/jiot.2014.2306328 es_ES
dc.description.references Hancke, G., Silva, B., & Hancke, Jr., G. (2012). The Role of Advanced Sensing in Smart Cities. Sensors, 13(1), 393-425. doi:10.3390/s130100393 es_ES
dc.description.references Chen, Y. (2016). Industrial information integration—A literature review 2006–2015. Journal of Industrial Information Integration, 2, 30-64. doi:10.1016/j.jii.2016.04.004 es_ES
dc.description.references Lim, G. H., Suh, I. H., & Suh, H. (2011). Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(3), 492-509. doi:10.1109/tsmca.2010.2076404 es_ES
dc.description.references Zhang, J. (2010). Multi-source remote sensing data fusion: status and trends. International Journal of Image and Data Fusion, 1(1), 5-24. doi:10.1080/19479830903561035 es_ES
dc.description.references Deng, X., Jiang, Y., Yang, L. T., Lin, M., Yi, L., & Wang, M. (2019). Data fusion based coverage optimization in heterogeneous sensor networks: A survey. Information Fusion, 52, 90-105. doi:10.1016/j.inffus.2018.11.020 es_ES
dc.description.references Jain, A. K., Duin, P. W., & Jianchang Mao. (2000). Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4-37. doi:10.1109/34.824819 es_ES
dc.description.references Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078 es_ES
dc.description.references Adam, M. S., Anisi, M. H., & Ali, I. (2020). Object tracking sensor networks in smart cities: Taxonomy, architecture, applications, research challenges and future directions. Future Generation Computer Systems, 107, 909-923. doi:10.1016/j.future.2017.12.011 es_ES
dc.description.references Gaur, A., Scotney, B., Parr, G., & McClean, S. (2015). Smart City Architecture and its Applications Based on IoT. Procedia Computer Science, 52, 1089-1094. doi:10.1016/j.procs.2015.05.122 es_ES
dc.description.references Byers, C. C. (2017). Architectural Imperatives for Fog Computing: Use Cases, Requirements, and Architectural Techniques for Fog-Enabled IoT Networks. IEEE Communications Magazine, 55(8), 14-20. doi:10.1109/mcom.2017.1600885 es_ES
dc.description.references Dautov, R., Distefano, S., Bruneo, D., Longo, F., Merlino, G., Puliafito, A., & Buyya, R. (2018). Metropolitan intelligent surveillance systems for urban areas by harnessing IoT and edge computing paradigms. Software: Practice and Experience, 48(8), 1475-1492. doi:10.1002/spe.2586 es_ES
dc.description.references Rincon, J. A., Poza-Lujan, J.-L., Julian, V., Posadas-Yagüe, J.-L., & Carrascosa, C. (2016). Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments. PLOS ONE, 11(2), e0149665. doi:10.1371/journal.pone.0149665 es_ES
dc.description.references Pérez Tijero, H., & Gutiérrez, J. J. (2018). Desarrollo de Sistemas Distribuidos de Tiempo Real y de Criticidad Mixta a través del Estándar DDS. Revista Iberoamericana de Automática e Informática industrial, 15(4), 439. doi:10.4995/riai.2017.9000 es_ES
dc.description.references Amurrio, A., Azketa, E., Gutiérrez, J. J., Aldea, M., & Parra, J. (2019). Una revisión de técnicas para la optimización del despliegue y planificación de sistemas de tiempo real distribuidos. Revista Iberoamericana de Automática e Informática industrial, 16(3), 249. doi:10.4995/riai.2019.10997 es_ES
dc.description.references Turtlebot http://turtlebot.com es_ES
dc.description.references Chen, L., Wei, H., & Ferryman, J. (2013). A survey of human motion analysis using depth imagery. Pattern Recognition Letters, 34(15), 1995-2006. doi:10.1016/j.patrec.2013.02.006 es_ES
dc.description.references Munera Sánchez, E., Muñoz Alcobendas, M., Blanes Noguera, J., Benet Gilabert, G., & Simó Ten, J. (2013). A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform League. Sensors, 13(11), 14954-14983. doi:10.3390/s131114954 es_ES
dc.description.references Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647. doi:10.1109/34.295913 es_ES
dc.description.references Chow, J., Lichti, D., Hol, J., Bellusci, G., & Luinge, H. (2014). IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning. Robotics, 3(3), 247-280. doi:10.3390/robotics3030247 es_ES


This item appears in the following Collection(s)

Show simple item record