- -

Smart Sensor Architectures for Multimedia Sensing in IoMT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart Sensor Architectures for Multimedia Sensing in IoMT

Mostrar el registro completo del ítem

Silvestre-Blanes, J.; Sempere Paya, VM.; Albero Albero, T. (2020). Smart Sensor Architectures for Multimedia Sensing in IoMT. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051400

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167844

Ficheros en el ítem

Metadatos del ítem

Título: Smart Sensor Architectures for Multimedia Sensing in IoMT
Autor: Silvestre-Blanes, Javier Sempere Paya, Víctor Miguel Albero Albero, Teresa
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Today, a wide range of developments and paradigms require the use of embedded systems characterized by restrictions on their computing capacity, consumption, cost, and network connection. The evolution of the Internet ...[+]
Palabras clave: IoMT , Governor , Edge computing , Near sensor computing
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20051400
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s20051400
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094151-B-I00/ES/SLICING DINAMICO EN REDES DE ACCESO RADIO 5G/
Agradecimientos:
This work has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.
Tipo: Artículo

References

Bangemann, T., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of Classical Components Into Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 947-959. doi:10.1109/jproc.2015.2510981

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27. doi:10.1109/mie.2017.2649104

Salehi, M., & Ejlali, A. (2015). A Hardware Platform for Evaluating Low-Energy Multiprocessor Embedded Systems Based on COTS Devices. IEEE Transactions on Industrial Electronics, 62(2), 1262-1269. doi:10.1109/tie.2014.2352215 [+]
Bangemann, T., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of Classical Components Into Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 947-959. doi:10.1109/jproc.2015.2510981

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27. doi:10.1109/mie.2017.2649104

Salehi, M., & Ejlali, A. (2015). A Hardware Platform for Evaluating Low-Energy Multiprocessor Embedded Systems Based on COTS Devices. IEEE Transactions on Industrial Electronics, 62(2), 1262-1269. doi:10.1109/tie.2014.2352215

Alvi, S. A., Afzal, B., Shah, G. A., Atzori, L., & Mahmood, W. (2015). Internet of multimedia things: Vision and challenges. Ad Hoc Networks, 33, 87-111. doi:10.1016/j.adhoc.2015.04.006

Jridi, M., Chapel, T., Dorez, V., Le Bougeant, G., & Le Botlan, A. (2018). SoC-Based Edge Computing Gateway in the Context of the Internet of Multimedia Things: Experimental Platform. Journal of Low Power Electronics and Applications, 8(1), 1. doi:10.3390/jlpea8010001

Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An Efficient Algorithm for Media-based Surveillance System (EAMSuS) in IoT Smart City Framework. Future Generation Computer Systems, 83, 619-628. doi:10.1016/j.future.2017.04.039

Chianese, A., Piccialli, F., & Riccio, G. (2015). Designing a Smart Multisensor Framework Based on Beaglebone Black Board. Lecture Notes in Electrical Engineering, 391-397. doi:10.1007/978-3-662-45402-2_60

Wang, W., Wang, Q., & Sohraby, K. (2016). Multimedia Sensing as a Service (MSaaS): Exploring Resource Saving Potentials of at Cloud-Edge IoTs and Fogs. IEEE Internet of Things Journal, 1-1. doi:10.1109/jiot.2016.2578722

Munir, A., Gordon-Ross, A., & Ranka, S. (2014). Multi-Core Embedded Wireless Sensor Networks: Architecture and Applications. IEEE Transactions on Parallel and Distributed Systems, 25(6), 1553-1562. doi:10.1109/tpds.2013.219

Baali, H., Djelouat, H., Amira, A., & Bensaali, F. (2018). Empowering Technology Enabled Care Using <italic>IoT</italic> and Smart Devices: A Review. IEEE Sensors Journal, 18(5), 1790-1809. doi:10.1109/jsen.2017.2786301

Kim, Y. G., Kong, J., & Chung, S. W. (2018). A Survey on Recent OS-Level Energy Management Techniques for Mobile Processing Units. IEEE Transactions on Parallel and Distributed Systems, 29(10), 2388-2401. doi:10.1109/tpds.2018.2822683

Chaib Draa, I., Niar, S., Tayeb, J., Grislin, E., & Desertot, M. (2016). Sensing user context and habits for run-time energy optimization. EURASIP Journal on Embedded Systems, 2017(1). doi:10.1186/s13639-016-0036-8

Chen, Y.-L., Chang, M.-F., Yu, C.-W., Chen, X.-Z., & Liang, W.-Y. (2018). Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems. Sensors, 18(9), 3068. doi:10.3390/s18093068

Tamilselvan, K., & Thangaraj, P. (2020). Pods – A novel intelligent energy efficient and dynamic frequency scalings for multi-core embedded architectures in an IoT environment. Microprocessors and Microsystems, 72, 102907. doi:10.1016/j.micpro.2019.102907

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem