Mostrar el registro sencillo del ítem
dc.contributor.author | Verdú, Samuel | es_ES |
dc.contributor.author | Ruiz Rico, María | es_ES |
dc.contributor.author | Pérez Jiménez, Alberto José | es_ES |
dc.contributor.author | Barat Baviera, José Manuel | es_ES |
dc.contributor.author | Talens Oliag, Pau | es_ES |
dc.contributor.author | Grau Meló, Raúl | es_ES |
dc.date.accessioned | 2021-06-12T03:33:08Z | |
dc.date.available | 2021-06-12T03:33:08Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 1382-6689 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167847 | |
dc.description.abstract | [EN] Immobilisation of natural compounds on solid supports to amplify antimicrobial properties has reported successful results, but modifications to physico-chemical properties can also imply modifications from a toxicological viewpoint. This work aimed to study the immobilising process of gallic acid in the antibacterial activity of L. innocua and its toxicological properties in vivo using Caenorhabditis elegans. The experiment was based on obtaining the minimum bactericidal concentration for free and immobilised gallic acid by comparing lethality, locomotion behaviour, chemotaxis and thermal stress resistance on C.elegans at those concentrations. The results showed a lowering minimum bactericidal concentration and modifications to nematode responses. Increased lethality and velocity of movements was observed. Immobilisation increased the repellent effect of gallic acid with a negative chemotaxis index. Thermal stress resistance was also affected, with higher mortality for immobilised gallic acid compared to bare particles and free gallic acid. Thus despite evidencing a generalised increase in the toxicity of gallic acid in vivo, lowering the minimum bactericidal concentration allowed a bacterial reduction of 99 % with less than one third of mortality for the nematodes exposed to free gallic acid. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge financial support from the University Polytechnic of Valencia by programme "Ayudas para la Contratacion de Doctores para el Acceso al Sistema Espanol de Ciencia, Tecnologia e Innovacion, en Estructuras de Investigacion de la UPV (PAID-10-17)" and the Ministerio de Ciencia, Innovacion y Universidades, the Agencia Estatal de Investigacion and FEDER-EU (Project RTI2018-101599-B-C21). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Environmental Toxicology and Pharmacology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Gallic acid | es_ES |
dc.subject | Immobilisation | es_ES |
dc.subject | Silica microparticles | es_ES |
dc.subject | LC50 | es_ES |
dc.subject | Behaviour | es_ES |
dc.subject | Thermal resistance | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.etap.2020.103492 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-17/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Verdú, S.; Ruiz Rico, M.; Pérez Jiménez, AJ.; Barat Baviera, JM.; Talens Oliag, P.; Grau Meló, R. (2020). Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans. Environmental Toxicology and Pharmacology. 80:1-8. https://doi.org/10.1016/j.etap.2020.103492 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.etap.2020.103492 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 80 | es_ES |
dc.identifier.pmid | 32941999 | es_ES |
dc.relation.pasarela | S\417949 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Abdel-Wahhab, M. A., Aljawish, A., Kenawy, A. M., El-Nekeety, A. A., Hamed, H. S., & Abdel-Aziem, S. H. (2016). Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish ( Clarias gariepinus ). Environmental Toxicology and Pharmacology, 41, 279-288. doi:10.1016/j.etap.2015.12.005 | es_ES |
dc.description.references | Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. doi:10.1080/08927014.2012.706751 | es_ES |
dc.description.references | Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244 | es_ES |
dc.description.references | Brenner, S. (1974). THE GENETICS OF CAENORHABDITIS ELEGANS. Genetics, 77(1), 71-94. doi:10.1093/genetics/77.1.71 | es_ES |
dc.description.references | Jayaraman, P., Sakharkar, M. K., Lim, C. S., Tang, T. H., & Sakharkar, K. R. (2010). Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. International Journal of Biological Sciences, 556-568. doi:10.7150/ijbs.6.556 | es_ES |
dc.description.references | Li, L., & Wang, H. (2013). Antibacterial Agents: Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo (Adv. Healthcare Mater. 10/2013). Advanced Healthcare Materials, 2(10), 1298-1298. doi:10.1002/adhm.201370050 | es_ES |
dc.description.references | Margie, O., Palmer, C., & Chin-Sang, I. (2013). <em>C. elegans</em> Chemotaxis Assay. Journal of Visualized Experiments, (74). doi:10.3791/50069 | es_ES |
dc.description.references | Pędziwiatr-Werbicka, E., Miłowska, K., Podlas, M., Marcinkowska, M., Ferenc, M., Brahmi, Y., … El Kadib, A. (2014). Oleochemical-Tethered SBA-15-Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 20(31), 9596-9606. doi:10.1002/chem.201402583 | es_ES |
dc.description.references | Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. doi:10.1016/j.ejmech.2017.11.095 | es_ES |
dc.description.references | Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d | es_ES |
dc.description.references | Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Barat, J. M. (2016). Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 105, 9-17. doi:10.1016/j.ejpb.2016.05.016 | es_ES |
dc.description.references | Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 | es_ES |
dc.description.references | Saul, N., Pietsch, K., Stürzenbaum, S. R., Menzel, R., & Steinberg, C. E. W. (2011). Diversity of Polyphenol Action in Caenorhabditis elegans: Between Toxicity and Longevity. Journal of Natural Products, 74(8), 1713-1720. doi:10.1021/np200011a | es_ES |
dc.description.references | Singulani, J. de L., Scorzoni, L., Gomes, P. C., Nazaré, A. C., Polaquini, C. R., Regasini, L. O., … Mendes-Giannini, M. J. S. (2017). Activity of gallic acid and its ester derivatives in Caenorhabditis elegans and zebrafish (Danio rerio) models. Future Medicinal Chemistry, 9(16), 1863-1872. doi:10.4155/fmc-2017-0096 | es_ES |
dc.description.references | Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. doi:10.1016/j.mrfmmm.2005.03.023 | es_ES |
dc.description.references | Techer, D., Milla, S., Fontaine, P., Viot, S., & Thomas, M. (2015). Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environmental Science and Pollution Research, 22(7), 5020-5029. doi:10.1007/s11356-015-4098-2 | es_ES |
dc.description.references | Vico, T. A., Arce, V. B., Fangio, M. F., Gende, L. B., Bertran, C. A., Mártire, D. O., & Churio, M. S. (2016). Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. Journal of Nanoparticle Research, 18(11). doi:10.1007/s11051-016-3652-2 | es_ES |
dc.description.references | Wilson, M. A., Shukitt-Hale, B., Kalt, W., Ingram, D. K., Joseph, J. A., & Wolkow, C. A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell, 5(1), 59-68. doi:10.1111/j.1474-9726.2006.00192.x | es_ES |
dc.description.references | Yuan, P., Pan, L., Xiong, L., Tong, J., Li, J., Huang, J., … Liu, Z. (2018). Black tea increases hypertonic stress resistance in C. elegans. Food & Function, 9(7), 3798-3806. doi:10.1039/c7fo02017a | es_ES |
dc.description.references | Zevian, S. C., & Yanowitz, J. L. (2014). Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods, 68(3), 450-457. doi:10.1016/j.ymeth.2014.04.015 | es_ES |
dc.description.references | Zhou, D., Yang, J., Li, H., Cui, C., Yu, Y., Liu, Y., & Lin, K. (2016). The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. Chemosphere, 154, 546-551. doi:10.1016/j.chemosphere.2016.04.011 | es_ES |