- -

LoRaWAN Network for Fire Monitoring in Rural Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

LoRaWAN Network for Fire Monitoring in Rural Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author García, Laura es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Bosch Roig, Ignacio es_ES
dc.contributor.author Vega-Rodríguez, Roberto es_ES
dc.date.accessioned 2021-06-12T03:33:20Z
dc.date.available 2021-06-12T03:33:20Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167853
dc.description.abstract [EN] The number of forest fires that occurred in recent years in different parts of the world is causing increased concern in the population, as the consequences of these fires expand beyond the destruction of the ecosystem. However, with the proliferation of the Internet of Things (IoT) industry, solutions for early fire detection should be developed. The assessment of the fire risk of an area and the communication of this fact to the population could reduce the number of fires originated by accident or due to the carelessness of the users. This paper presents a low-cost network based on Long Range (LoRa) technology to autonomously evaluate the level of fire risk and the presence of a forest fire in rural areas. The system is comprised of several LoRa nodes with sensors to measure the temperature, relative humidity, wind speed and CO2 of the environment. The data from the nodes is stored and processed in a The Things Network (TTN) server that sends the data to a website for the graphic visualization of the collected data. The system is tested in a real environment and, the results show that it is possible to cover a circular area of a radius of 4 km with a single gateway. es_ES
dc.description.sponsorship This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades" through the "Ayudas para la adquisicion de equipamiento cientifico-tecnico, Subprograma estatal de infraestructuras de investigacion y equipamiento cientifico-tecnico (plan Estatal I+D+i 2017-2020)" (project EQC2018-004988-P), by Universidad de Granada through the "Programa de Proyectos de Investigacion Precompetitivos para Jovenes Investigadores. Modalidad A jovenes Doctores" of "Plan Propio de Investigacion y Transferencia 2019" (PPJIA2019.10), by the Campus de Excelencia Internacional Global del Mar (CEI.Mar) through the "Ayudas Proyectos Jovenes Investigadores CEI.Mar 2019", (Project CEIJ-020), by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) (Project ERANETMED3-227 SMARTWATIR). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Long Range (LoRa) es_ES
dc.subject LoRaWAN es_ES
dc.subject Fire detection es_ES
dc.subject Low-cost es_ES
dc.subject Arduino es_ES
dc.subject Monitoring es_ES
dc.subject Sensors es_ES
dc.subject Wireless sensor networks (WSN) es_ES
dc.subject Dragino es_ES
dc.subject The Things Network (TTN) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title LoRaWAN Network for Fire Monitoring in Rural Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics9030531 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2018- 004988-P/ES/IoT5GLab: Diseño e implementación de las redes futuras para 5G e Internet de las cosas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UGR//PPJIA2019.10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CEIMAR//CEIJ-020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sendra, S.; García, L.; Lloret, J.; Bosch Roig, I.; Vega-Rodríguez, R. (2020). LoRaWAN Network for Fire Monitoring in Rural Environments. Electronics. 9(3):1-29. https://doi.org/10.3390/electronics9030531 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics9030531 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\413174 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universidad de Granada es_ES
dc.contributor.funder Campus de Excelencia Internacional del Mar es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Annual report of Forest Fires in Europe, Middle East and North Africa for 2018https://effis.jrc.ec.europa.eu/media/cms_page_media/40/Annual_Report_2018_final_pdf_06.11.2019_n208KFB.pdf es_ES
dc.description.references Waks, L., Kocher, S. D., & Huntsinger, L. (2018). Landowner Perspectives on Reforestation following a High-Severity Wildfire in California. Journal of Forestry, 117(1), 30-37. doi:10.1093/jofore/fvy071 es_ES
dc.description.references Ministerio de Agricultura, Pesca y Alimentaciónhttps://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-decenio-2006–2015_tcm30–511095.pdf es_ES
dc.description.references Integrated System of Forest Fire Management (Original: Sistema Integrado de Gestión de Incendios Forestales)http://www.prevencionincendios.gva.es/ es_ES
dc.description.references Potter, B. E., Winkler, J. A., Wilhelm, D. F., Shadbolt, R. P., & Bian, X. (2008). Computing the Low-Elevation Variant of the Haines Index for Fire Weather Forecasts. Weather and Forecasting, 23(1), 159-167. doi:10.1175/2007waf2007025.1 es_ES
dc.description.references Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722 es_ES
dc.description.references Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., & Lopez-Soler, J. M. (2018). Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Communications Magazine, 56(2), 60-67. doi:10.1109/mcom.2018.1700625 es_ES
dc.description.references Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., & Rozas, A. (2016). Forest Monitoring and Wildland Early Fire Detection by a Hierarchical Wireless Sensor Network. Journal of Sensors, 2016, 1-8. doi:10.1155/2016/8325845 es_ES
dc.description.references Ullah Jan, S. (2018). An Improved Forest Fire Alerting System Using Wireless Sensor Network. Advances in Networks, 6(1), 21. doi:10.11648/j.net.20180601.13 es_ES
dc.description.references Lule, E., & Eddie Bulega, T. (2015). A Scalable Wireless Sensor Network (WSN) Based Architecture for Fire Disaster Monitoring in the Developing World. International Journal of Computer Network and Information Security, 7(2), 40-49. doi:10.5815/ijcnis.2015.02.05 es_ES
dc.description.references Ma, T., Liu, Y., Fu, J., & Jing, Y. (2015). Forest Fire Monitoring Based on Mixed Wireless Sensor Networks. International Journal of Smart Home, 9(3), 169-184. doi:10.14257/ijsh.2015.9.3.16 es_ES
dc.description.references Sisinni, E., Ferrari, P., Fernandes Carvalho, D., Rinaldi, S., Marco, P., Flammini, A., & Depari, A. (2020). LoRaWAN Range Extender for Industrial IoT. IEEE Transactions on Industrial Informatics, 16(8), 5607-5616. doi:10.1109/tii.2019.2958620 es_ES
dc.description.references LoRa Documentationhttps://lora.readthedocs.io/en/latest/ es_ES
dc.description.references Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.-D., & Skarmeta, A. (2018). Performance Evaluation of LoRa Considering Scenario Conditions. Sensors, 18(3), 772. doi:10.3390/s18030772 es_ES
dc.description.references Semtech Application Note AN1200.22http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf es_ES
dc.description.references Semtech Application Note AN1200.13https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf es_ES
dc.description.references Waret, A., Kaneko, M., Guitton, A., & El Rachkidy, N. (2019). LoRa Throughput Analysis With Imperfect Spreading Factor Orthogonality. IEEE Wireless Communications Letters, 8(2), 408-411. doi:10.1109/lwc.2018.2873705 es_ES
dc.description.references Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., & Tinnirello, I. (2018). Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Communications Letters, 22(4), 796-799. doi:10.1109/lcomm.2018.2797057 es_ES
dc.description.references LoRa Alliance, Notice of Use and Disclosurehttps://net868.ru/assets/pdf/LoRaWAN-v1.1.pdf es_ES
dc.description.references In Microchip websitehttps://microchipdeveloper.com/lora:lorawan-architecture es_ES
dc.description.references LoRaWAN 1.1 Regional Parametershttps://lora-alliance.org/sites/default/files/2018–04/lorawantm_regional_parameters_v1.1rb_-_final.pdf es_ES
dc.description.references Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1-7. doi:10.1016/j.icte.2017.12.005 es_ES
dc.description.references Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021 es_ES
dc.description.references Arora, V. K., Sharma, V., & Sachdeva, M. (2018). On QoS evaluation for ZigBee incorporated Wireless Sensor Network (IEEE 802.15.4) using mobile sensor nodes. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2018.10.013 es_ES
dc.description.references Lavric, A., Petrariu, A. I., & Popa, V. (2019). Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions. IEEE Access, 7, 35816-35825. doi:10.1109/access.2019.2903157 es_ES
dc.description.references Arduino Uno Rev3 Featureshttps://store.arduino.cc/arduino-uno-rev3 es_ES
dc.description.references Dragino Lora Shield Featureshttp://wiki.dragino.com/index.php?title=Lora_Shield es_ES
dc.description.references Datasheet of DTH11 Sensorhttps://components101.com/dht11-temperature-sensor es_ES
dc.description.references Datasheet of MQ135 Gas Sensorhttps://components101.com/sensors/mq135-gas-sensor-for-air-quality es_ES
dc.description.references MQ135 Air Quality Sensor Modulehttps://www.cytron.io/p-mq135-air-quality-sensor-module es_ES
dc.description.references The Things Indoor Gateway Featureshttps://www.thethingsnetwork.org/docs/gateways/thethingsindoor/ es_ES
dc.description.references Path Loss Models for Low-Power Wide-Area Networks: Experimental Results Using Lorahttps://pdfs.semanticscholar.org/c362/dfd416bac03f2323204ec866baa0c00debae.pdf es_ES
dc.description.references El Chall, R., Lahoud, S., & El Helou, M. (2019). LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet of Things Journal, 6(2), 2366-2378. doi:10.1109/jiot.2019.2906838 es_ES
dc.description.references LoRa Lite Gateway Featureshttps://www.wireless-solutions.de/products/long-range-radio/lora-lite-gateway.html es_ES
dc.description.references Lloret, J., Sendra, S., Coll, H., & Garcia, M. (2009). Saving Energy in Wireless Local Area Sensor Networks. The Computer Journal, 53(10), 1658-1673. doi:10.1093/comjnl/bxp112 es_ES
dc.description.references Cambra, C., Sendra, S., Lloret, J., & Parra, L. (2016). Ad hoc Network for Emergency Rescue System based on Unmanned Aerial Vehicles. Network Protocols and Algorithms, 7(4), 72. doi:10.5296/npa.v7i4.8816 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem