Mostrar el registro sencillo del ítem
dc.contributor.author | Sendra, Sandra | es_ES |
dc.contributor.author | García, Laura | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Bosch Roig, Ignacio | es_ES |
dc.contributor.author | Vega-Rodríguez, Roberto | es_ES |
dc.date.accessioned | 2021-06-12T03:33:20Z | |
dc.date.available | 2021-06-12T03:33:20Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167853 | |
dc.description.abstract | [EN] The number of forest fires that occurred in recent years in different parts of the world is causing increased concern in the population, as the consequences of these fires expand beyond the destruction of the ecosystem. However, with the proliferation of the Internet of Things (IoT) industry, solutions for early fire detection should be developed. The assessment of the fire risk of an area and the communication of this fact to the population could reduce the number of fires originated by accident or due to the carelessness of the users. This paper presents a low-cost network based on Long Range (LoRa) technology to autonomously evaluate the level of fire risk and the presence of a forest fire in rural areas. The system is comprised of several LoRa nodes with sensors to measure the temperature, relative humidity, wind speed and CO2 of the environment. The data from the nodes is stored and processed in a The Things Network (TTN) server that sends the data to a website for the graphic visualization of the collected data. The system is tested in a real environment and, the results show that it is possible to cover a circular area of a radius of 4 km with a single gateway. | es_ES |
dc.description.sponsorship | This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades" through the "Ayudas para la adquisicion de equipamiento cientifico-tecnico, Subprograma estatal de infraestructuras de investigacion y equipamiento cientifico-tecnico (plan Estatal I+D+i 2017-2020)" (project EQC2018-004988-P), by Universidad de Granada through the "Programa de Proyectos de Investigacion Precompetitivos para Jovenes Investigadores. Modalidad A jovenes Doctores" of "Plan Propio de Investigacion y Transferencia 2019" (PPJIA2019.10), by the Campus de Excelencia Internacional Global del Mar (CEI.Mar) through the "Ayudas Proyectos Jovenes Investigadores CEI.Mar 2019", (Project CEIJ-020), by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) (Project ERANETMED3-227 SMARTWATIR). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Long Range (LoRa) | es_ES |
dc.subject | LoRaWAN | es_ES |
dc.subject | Fire detection | es_ES |
dc.subject | Low-cost | es_ES |
dc.subject | Arduino | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Sensors | es_ES |
dc.subject | Wireless sensor networks (WSN) | es_ES |
dc.subject | Dragino | es_ES |
dc.subject | The Things Network (TTN) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | LoRaWAN Network for Fire Monitoring in Rural Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics9030531 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//EQC2018- 004988-P/ES/IoT5GLab: Diseño e implementación de las redes futuras para 5G e Internet de las cosas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UGR//PPJIA2019.10/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CEIMAR//CEIJ-020/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Sendra, S.; García, L.; Lloret, J.; Bosch Roig, I.; Vega-Rodríguez, R. (2020). LoRaWAN Network for Fire Monitoring in Rural Environments. Electronics. 9(3):1-29. https://doi.org/10.3390/electronics9030531 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics9030531 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\413174 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universidad de Granada | es_ES |
dc.contributor.funder | Campus de Excelencia Internacional del Mar | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Annual report of Forest Fires in Europe, Middle East and North Africa for 2018https://effis.jrc.ec.europa.eu/media/cms_page_media/40/Annual_Report_2018_final_pdf_06.11.2019_n208KFB.pdf | es_ES |
dc.description.references | Waks, L., Kocher, S. D., & Huntsinger, L. (2018). Landowner Perspectives on Reforestation following a High-Severity Wildfire in California. Journal of Forestry, 117(1), 30-37. doi:10.1093/jofore/fvy071 | es_ES |
dc.description.references | Ministerio de Agricultura, Pesca y Alimentaciónhttps://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-decenio-2006–2015_tcm30–511095.pdf | es_ES |
dc.description.references | Integrated System of Forest Fire Management (Original: Sistema Integrado de Gestión de Incendios Forestales)http://www.prevencionincendios.gva.es/ | es_ES |
dc.description.references | Potter, B. E., Winkler, J. A., Wilhelm, D. F., Shadbolt, R. P., & Bian, X. (2008). Computing the Low-Elevation Variant of the Haines Index for Fire Weather Forecasts. Weather and Forecasting, 23(1), 159-167. doi:10.1175/2007waf2007025.1 | es_ES |
dc.description.references | Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722 | es_ES |
dc.description.references | Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., & Lopez-Soler, J. M. (2018). Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Communications Magazine, 56(2), 60-67. doi:10.1109/mcom.2018.1700625 | es_ES |
dc.description.references | Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., & Rozas, A. (2016). Forest Monitoring and Wildland Early Fire Detection by a Hierarchical Wireless Sensor Network. Journal of Sensors, 2016, 1-8. doi:10.1155/2016/8325845 | es_ES |
dc.description.references | Ullah Jan, S. (2018). An Improved Forest Fire Alerting System Using Wireless Sensor Network. Advances in Networks, 6(1), 21. doi:10.11648/j.net.20180601.13 | es_ES |
dc.description.references | Lule, E., & Eddie Bulega, T. (2015). A Scalable Wireless Sensor Network (WSN) Based Architecture for Fire Disaster Monitoring in the Developing World. International Journal of Computer Network and Information Security, 7(2), 40-49. doi:10.5815/ijcnis.2015.02.05 | es_ES |
dc.description.references | Ma, T., Liu, Y., Fu, J., & Jing, Y. (2015). Forest Fire Monitoring Based on Mixed Wireless Sensor Networks. International Journal of Smart Home, 9(3), 169-184. doi:10.14257/ijsh.2015.9.3.16 | es_ES |
dc.description.references | Sisinni, E., Ferrari, P., Fernandes Carvalho, D., Rinaldi, S., Marco, P., Flammini, A., & Depari, A. (2020). LoRaWAN Range Extender for Industrial IoT. IEEE Transactions on Industrial Informatics, 16(8), 5607-5616. doi:10.1109/tii.2019.2958620 | es_ES |
dc.description.references | LoRa Documentationhttps://lora.readthedocs.io/en/latest/ | es_ES |
dc.description.references | Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.-D., & Skarmeta, A. (2018). Performance Evaluation of LoRa Considering Scenario Conditions. Sensors, 18(3), 772. doi:10.3390/s18030772 | es_ES |
dc.description.references | Semtech Application Note AN1200.22http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf | es_ES |
dc.description.references | Semtech Application Note AN1200.13https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRa%20Design%20Guide.pdf | es_ES |
dc.description.references | Waret, A., Kaneko, M., Guitton, A., & El Rachkidy, N. (2019). LoRa Throughput Analysis With Imperfect Spreading Factor Orthogonality. IEEE Wireless Communications Letters, 8(2), 408-411. doi:10.1109/lwc.2018.2873705 | es_ES |
dc.description.references | Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., & Tinnirello, I. (2018). Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Performance. IEEE Communications Letters, 22(4), 796-799. doi:10.1109/lcomm.2018.2797057 | es_ES |
dc.description.references | LoRa Alliance, Notice of Use and Disclosurehttps://net868.ru/assets/pdf/LoRaWAN-v1.1.pdf | es_ES |
dc.description.references | In Microchip websitehttps://microchipdeveloper.com/lora:lorawan-architecture | es_ES |
dc.description.references | LoRaWAN 1.1 Regional Parametershttps://lora-alliance.org/sites/default/files/2018–04/lorawantm_regional_parameters_v1.1rb_-_final.pdf | es_ES |
dc.description.references | Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1-7. doi:10.1016/j.icte.2017.12.005 | es_ES |
dc.description.references | Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021 | es_ES |
dc.description.references | Arora, V. K., Sharma, V., & Sachdeva, M. (2018). On QoS evaluation for ZigBee incorporated Wireless Sensor Network (IEEE 802.15.4) using mobile sensor nodes. Journal of King Saud University - Computer and Information Sciences. doi:10.1016/j.jksuci.2018.10.013 | es_ES |
dc.description.references | Lavric, A., Petrariu, A. I., & Popa, V. (2019). Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions. IEEE Access, 7, 35816-35825. doi:10.1109/access.2019.2903157 | es_ES |
dc.description.references | Arduino Uno Rev3 Featureshttps://store.arduino.cc/arduino-uno-rev3 | es_ES |
dc.description.references | Dragino Lora Shield Featureshttp://wiki.dragino.com/index.php?title=Lora_Shield | es_ES |
dc.description.references | Datasheet of DTH11 Sensorhttps://components101.com/dht11-temperature-sensor | es_ES |
dc.description.references | Datasheet of MQ135 Gas Sensorhttps://components101.com/sensors/mq135-gas-sensor-for-air-quality | es_ES |
dc.description.references | MQ135 Air Quality Sensor Modulehttps://www.cytron.io/p-mq135-air-quality-sensor-module | es_ES |
dc.description.references | The Things Indoor Gateway Featureshttps://www.thethingsnetwork.org/docs/gateways/thethingsindoor/ | es_ES |
dc.description.references | Path Loss Models for Low-Power Wide-Area Networks: Experimental Results Using Lorahttps://pdfs.semanticscholar.org/c362/dfd416bac03f2323204ec866baa0c00debae.pdf | es_ES |
dc.description.references | El Chall, R., Lahoud, S., & El Helou, M. (2019). LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet of Things Journal, 6(2), 2366-2378. doi:10.1109/jiot.2019.2906838 | es_ES |
dc.description.references | LoRa Lite Gateway Featureshttps://www.wireless-solutions.de/products/long-range-radio/lora-lite-gateway.html | es_ES |
dc.description.references | Lloret, J., Sendra, S., Coll, H., & Garcia, M. (2009). Saving Energy in Wireless Local Area Sensor Networks. The Computer Journal, 53(10), 1658-1673. doi:10.1093/comjnl/bxp112 | es_ES |
dc.description.references | Cambra, C., Sendra, S., Lloret, J., & Parra, L. (2016). Ad hoc Network for Emergency Rescue System based on Unmanned Aerial Vehicles. Network Protocols and Algorithms, 7(4), 72. doi:10.5296/npa.v7i4.8816 | es_ES |