- -

Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Otero-Vega, Jorge Enrique es_ES
dc.contributor.author Felis-Enguix, Iván es_ES
dc.contributor.author Herrero Debón, Alicia es_ES
dc.contributor.author Merchán, José A. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.date.accessioned 2021-06-12T03:33:51Z
dc.date.available 2021-06-12T03:33:51Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167869
dc.description.abstract [EN] A full chain simulation of the acoustic hadrontherapy monitoring for brain tumours is presented in this work. For the study, a proton beam of 100 MeV is considered. In the first stage, Geant4 is used to simulate the energy deposition and to study the behaviour of the Bragg peak. The energy deposition in the medium produces local heating that can be considered instantaneous with respect to the hydrodynamic time scale producing a sound pressure wave. The resulting thermoacoustic signal has been subsequently obtained by solving the thermoacoustic equation. The acoustic propagation has been simulated by FEM methods in the brain and the skull, where a set of piezoelectric sensors are placed. Last, the final received signals in the sensors have been processed in order to reconstruct the position of the thermal source and, thus, to determine the feasibility and accuracy of acoustic beam monitoring in hadrontherapy. es_ES
dc.description.sponsorship This research received was funded by the Spanish Agencia Estatal de Investigacion, grant numbers FPA2015-65150-C3-2-P (MINECO/FEDER) and PGC2018-096663-B-C43 (MCIU/FEDER). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Piezoelectric sensors es_ES
dc.subject Hadrontherapy es_ES
dc.subject Monitoring Bragg peak es_ES
dc.subject FEM method es_ES
dc.subject Monte Carlo simulations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20102987 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096663-B-C43/ES/FISICA FUNDAMENTAL, DETECCION ACUSTICA Y ASTRONOMIA MULTI-MENSAJERO CON TELESCOPIOS DE NEUTRINOS EN LA UPV/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Otero-Vega, JE.; Felis-Enguix, I.; Herrero Debón, A.; Merchán, JA.; Ardid Ramírez, M. (2020). Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment. Sensors. 20(10):1-12. https://doi.org/10.3390/s20102987 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20102987 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 32466140 es_ES
dc.identifier.pmcid PMC7287827 es_ES
dc.relation.pasarela S\412800 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references A population-based assessment of proton beam therapy utilization in California. (2020). The American Journal of Managed Care, 26(2), e28-e35. doi:10.37765/ajmc.2020.42398 es_ES
dc.description.references Dutz, A., Agolli, L., Bütof, R., Valentini, C., Baumann, M., Lühr, A., … Krause, M. (2020). Neurocognitive function and quality of life after proton beam therapy for brain tumour patients. Radiotherapy and Oncology, 143, 108-116. doi:10.1016/j.radonc.2019.12.024 es_ES
dc.description.references Lesueur, P., Calugaru, V., Nauraye, C., Stefan, D., Cao, K., Emery, E., … Thariat, J. (2019). Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treatment Reviews, 72, 56-64. doi:10.1016/j.ctrv.2018.11.004 es_ES
dc.description.references Amaldi, U., Bonomi, R., Braccini, S., Crescenti, M., Degiovanni, A., Garlasché, M., … Zennaro, R. (2010). Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 620(2-3), 563-577. doi:10.1016/j.nima.2010.03.130 es_ES
dc.description.references Weber, D. C., Abrunhosa-Branquinho, A., Bolsi, A., Kacperek, A., Dendale, R., Geismar, D., … Grau, C. (2017). Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire. Radiotherapy and Oncology, 124(2), 185-189. doi:10.1016/j.radonc.2017.07.012 es_ES
dc.description.references MIZUMOTO, M., OSHIRO, Y., YAMAMOTO, T., KOHZUKI, H., & SAKURAI, H. (2017). Proton Beam Therapy for Pediatric Brain Tumor. Neurologia medico-chirurgica, 57(7), 343-355. doi:10.2176/nmc.ra.2017-0003 es_ES
dc.description.references Sulak, L., Armstrong, T., Baranger, H., Bregman, M., Levi, M., Mael, D., … Learned, J. (1979). Experimental studies of the acoustic signature of proton beams traversing fluid media. Nuclear Instruments and Methods, 161(2), 203-217. doi:10.1016/0029-554x(79)90386-0 es_ES
dc.description.references Aso, T., Kimura, A., Tanaka, S., Yoshida, H., Kanematsu, N., Sasaki, T., & Akagi, T. (2005). Verification of the dose distributions with GEANT4 simulation for proton therapy. IEEE Transactions on Nuclear Science, 52(4), 896-901. doi:10.1109/tns.2005.852697 es_ES
dc.description.references Jones, K. C., Witztum, A., Sehgal, C. M., & Avery, S. (2014). Proton beam characterization by proton-induced acoustic emission: simulation studies. Physics in Medicine and Biology, 59(21), 6549-6563. doi:10.1088/0031-9155/59/21/6549 es_ES
dc.description.references Jones, K. C., Seghal, C. M., & Avery, S. (2016). How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies. Physics in Medicine and Biology, 61(6), 2213-2242. doi:10.1088/0031-9155/61/6/2213 es_ES
dc.description.references Donnelly, B. R., & Medige, J. (1997). Shear Properties of Human Brain Tissue. Journal of Biomechanical Engineering, 119(4), 423-432. doi:10.1115/1.2798289 es_ES
dc.description.references Gu, L., Chafi, M. S., Ganpule, S., & Chandra, N. (2012). The influence of heterogeneous meninges on the brain mechanics under primary blast loading. Composites Part B: Engineering, 43(8), 3160-3166. doi:10.1016/j.compositesb.2012.04.014 es_ES
dc.description.references Peterson, J., & Dechow, P. C. (2003). Material properties of the human cranial vault and zygoma. The Anatomical Record, 274A(1), 785-797. doi:10.1002/ar.a.10096 es_ES
dc.description.references Fellah, Z. E. A., Chapelon, J. Y., Berger, S., Lauriks, W., & Depollier, C. (2004). Ultrasonic wave propagation in human cancellous bone: Application of Biot theory. The Journal of the Acoustical Society of America, 116(1), 61-73. doi:10.1121/1.1755239 es_ES
dc.description.references Raffaele, L. (2016). Advances in hadrontherapy dosimetry. Physica Medica, 32, 187. doi:10.1016/j.ejmp.2016.07.323 es_ES
dc.description.references Dosanjh, M., Amaldi, U., Mayer, R., & Poetter, R. (2018). ENLIGHT: European network for Light ion hadron therapy. Radiotherapy and Oncology, 128(1), 76-82. doi:10.1016/j.radonc.2018.03.014 es_ES
dc.description.references Ahmad, M., Xiang, L., Yousefi, S., & Xing, L. (2015). Theoretical detection threshold of the proton-acoustic range verification technique. Medical Physics, 42(10), 5735-5744. doi:10.1118/1.4929939 es_ES
dc.description.references Smith, A., Gillin, M., Bues, M., Zhu, X. R., Suzuki, K., Mohan, R., … Matsuda, K. (2009). The M. D. Anderson proton therapy system. Medical Physics, 36(9Part1), 4068-4083. doi:10.1118/1.3187229 es_ES
dc.description.references Yock, T. I., & Tarbell, N. J. (2004). Technology Insight: proton beam radiotherapy for treatment in pediatric brain tumors. Nature Clinical Practice Oncology, 1(2), 97-103. doi:10.1038/ncponc0090 es_ES
dc.description.references Riva, M., Vallicelli, E. A., Baschirotto, A., & De Matteis, M. (2018). Acoustic Analog Front End for Proton Range Detection in Hadron Therapy. IEEE Transactions on Biomedical Circuits and Systems, 12(4), 954-962. doi:10.1109/tbcas.2018.2828703 es_ES
dc.description.references Acoustics Module User’s Guidehttps://doc.comsol.com/5.4/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf es_ES
dc.description.references Ardid, M., Felis, I., Martínez-Mora, J. A., & Otero, J. (2017). Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors. Journal of Sensors, 2017, 1-8. doi:10.1155/2017/8179672 es_ES
dc.description.references Otero, Felis, Ardid, & Herrero. (2019). Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring. Sensors, 19(9), 1971. doi:10.3390/s19091971 es_ES
dc.description.references Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164-168. doi:10.1090/qam/10666 es_ES
dc.description.references Geant4 A Simulation Toolkithttp://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.5-2.0/fo/BookForApplicationDevelopers.pdf es_ES
dc.description.references Barber, T. W., Brockway, J. A., & Higgins, L. S. (1970). THE DENSITY OF TISSUES IN AND ABOUT THE HEAD. Acta Neurologica Scandinavica, 46(1), 85-92. doi:10.1111/j.1600-0404.1970.tb05606.x es_ES
dc.description.references Adrián-Martínez, S., Bou-Cabo, M., Felis, I., Llorens, C. D., Martínez-Mora, J. A., Saldaña, M., & Ardid, M. (2015). Acoustic Signal Detection Through the Cross-Correlation Method in Experiments with Different Signal to Noise Ratio and Reverberation Conditions. Lecture Notes in Computer Science, 66-79. doi:10.1007/978-3-662-46338-3_7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem