- -

Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, José es_ES
dc.contributor.author Tiseira, Andrés-Omar es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Hervás-Gómez, Natalia es_ES
dc.date.accessioned 2021-06-12T03:34:10Z
dc.date.available 2021-06-12T03:34:10Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167877
dc.description This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420916281 es_ES
dc.description.abstract [EN] During normal operation, radial turbines may work in off-design conditions. Off-design conditions may be characterised by very low expansion ratios, very high expansion ratios, very low rotational speeds or very high rotational speeds. All of these cases are difficult to characterise experimentally due to high experimental uncertainties or a lack of capabilities in the system feeding pressurised air to the turbine. Also, there are two- and three-dimensional computational fluid dynamics simulations at these operating points but could not be accurate enough due to high turbulence effects, flow detachment and shock wave generation. With a lack of high-quality data, experimental or computational, to fit the reduced-order turbine models used in zero- and one-dimensional engine simulations, there are large uncertainties associated to their results in off-design conditions. This work develops an experimental facility able to characterise the internal flow of radial turbine stators in terms of pressure and velocity fields at off-design and regular working conditions. The facility consists of an upscaled model of a radial turbine volute and stator fed with air in pressure- and temperature-controlled conditions, so different sensors can be used inside it with the least amount of flow disturbance. The different restrictions considered in the design of the upscaled model are presented, and their effects in the final experimental apparatus capabilities are discussed. A preliminary comparison between computational fluid dynamics simulations and experimental data shows encouraging results. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the programme 'Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain'. The support given to Ms N.H.G. by Universitat Politecnica de Valencia through the 'FPI-Subprograma 2' (No. FPI-2018-S2-1368) grant within the 'Programa de Apoyo para la Investigacion y Desarrollo (PAID-0118)' is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Radial turbine es_ES
dc.subject Scaled volute-stator turbine es_ES
dc.subject Variable geometry turbine es_ES
dc.subject Experimental facility es_ES
dc.subject Computational fluid dynamics simulation es_ES
dc.subject Fluid measurement es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087420916281 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2018-S2-1368/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galindo, J.; Tiseira, A.; García-Cuevas González, LM.; Hervás-Gómez, N. (2021). Experimental approach for the analysis of the flow behaviour in the stator of a real centripetal turbine. International Journal of Engine Research. 22(6):2010-2020. https://doi.org/10.1177/1468087420916281 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087420916281 es_ES
dc.description.upvformatpinicio 2010 es_ES
dc.description.upvformatpfin 2020 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\410181 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289 es_ES
dc.description.references Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES
dc.description.references Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions. SAE International Journal of Engines, 6(2), 729-738. doi:10.4271/2013-01-0577 es_ES
dc.description.references Galindo, J., Fajardo, P., Navarro, R., & García-Cuevas, L. M. (2013). Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling. Applied Energy, 103, 116-127. doi:10.1016/j.apenergy.2012.09.013 es_ES
dc.description.references Zhang, Y., Zhang, Y., & Wu, Y. (2016). A review of rotating stall in reversible pump turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(7), 1181-1204. doi:10.1177/0954406216640579 es_ES
dc.description.references Galindo, J., Navarro, R., García-Cuevas, L. M., Tarí, D., Tartoussi, H., & Guilain, S. (2018). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research, 20(4), 393-404. doi:10.1177/1468087418754899 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032 es_ES
dc.description.references Navarro García, R. (s. f.). A numerical approach for predicting flow-induced acoustics at near-stall conditions in an automotive turbocharger compressor. doi:10.4995/thesis/10251/44114 es_ES
dc.description.references Inhestern, L. B. (s. f.). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions. doi:10.4995/thesis/10251/119989 es_ES
dc.description.references Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149 es_ES
dc.description.references Menter, F. R. (1992). Influence of freestream values on k-omega turbulence model predictions. AIAA Journal, 30(6), 1657-1659. doi:10.2514/3.11115 es_ES
dc.description.references Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11), 1299-1310. doi:10.2514/3.10041 es_ES
dc.description.references Simpson, A. T., Spence, S. W. T., & Watterson, J. K. (2009). A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines. Journal of Turbomachinery, 131(3). doi:10.1115/1.2988493 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem