- -

A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huerta Herraiz, Álvaro es_ES
dc.contributor.author Martínez-Rodrigo, Arturo es_ES
dc.contributor.author Bertomeu-González, Vicente es_ES
dc.contributor.author Quesada, Aurelio es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.date.accessioned 2021-06-12T03:34:20Z
dc.date.available 2021-06-12T03:34:20Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167881
dc.description.abstract [EN] Atrial fibrillation (AF) is the most common heart rhythm disturbance in clinical practice. It often starts with asymptomatic and very short episodes, which are extremely difficult to detect without long-term monitoring of the patient's electrocardiogram (ECG). Although recent portable and wearable devices may become very useful in this context, they often record ECG signals strongly corrupted with noise and artifacts. This impairs automatized ulterior analyses that could only be conducted reliably through a previous stage of automatic identification of high-quality ECG intervals. So far, a variety of techniques for ECG quality assessment have been proposed, but poor performances have been reported on recordings from patients with AF. This work introduces a novel deep learning-based algorithm to robustly identify high-quality ECG segments within the challenging environment of single-lead recordings alternating sinus rhythm, AF episodes and other rhythms. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. For its validation, almost 100,000 ECG segments from three different databases have been analyzed during 500 learning-testing iterations, thus involving more than 320,000 ECGs analyzed in total. The obtained results have revealed a discriminant ability to detect high-quality and discard low-quality ECG excerpts of about 93%, only misclassifying around 5% of clean AF segments as noisy ones. In addition, the method has also been able to deal with raw ECG recordings, without requiring signal preprocessing or feature extraction as previous stages. Consequently, it is particularly suitable for portable and wearable devices embedding, facilitating early detection of AF as well as other automatized diagnostic facilities by reliably providing high-quality ECG excerpts to further processing stages. es_ES
dc.description.sponsorship This research has been supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha and AICO/2019/036 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Continuous wavelet transform es_ES
dc.subject Convolutional neural network es_ES
dc.subject Deep learning es_ES
dc.subject Quality assessment es_ES
dc.subject Single-lead ECG es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e22070733 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F036/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Huerta Herraiz, Á.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Quesada, A.; Rieta, JJ.; Alcaraz, R. (2020). A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy. 22(7):1-17. https://doi.org/10.3390/e22070733 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e22070733 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 33286505 es_ES
dc.identifier.pmcid PMC7517279 es_ES
dc.relation.pasarela S\435169 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2020). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217-221. doi:10.1177/1747493019897870 es_ES
dc.description.references Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280 es_ES
dc.description.references Colilla, S., Crow, A., Petkun, W., Singer, D. E., Simon, T., & Liu, X. (2013). Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the U.S. Adult Population. The American Journal of Cardiology, 112(8), 1142-1147. doi:10.1016/j.amjcard.2013.05.063 es_ES
dc.description.references Khoo, C. W., Krishnamoorthy, S., Lim, H. S., & Lip, G. Y. H. (2012). Atrial fibrillation, arrhythmia burden and thrombogenesis. International Journal of Cardiology, 157(3), 318-323. doi:10.1016/j.ijcard.2011.06.088 es_ES
dc.description.references Warmus, P., Niedziela, N., Huć, M., Wierzbicki, K., & Adamczyk-Sowa, M. (2020). Assessment of the manifestations of atrial fibrillation in patients with acute cerebral stroke – a single-center study based on 998 patients. Neurological Research, 42(6), 471-476. doi:10.1080/01616412.2020.1746508 es_ES
dc.description.references Sposato, L. A., Cipriano, L. E., Saposnik, G., Vargas, E. R., Riccio, P. M., & Hachinski, V. (2015). Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. The Lancet Neurology, 14(4), 377-387. doi:10.1016/s1474-4422(15)70027-x es_ES
dc.description.references Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492 es_ES
dc.description.references Ferrari, R., Bertini, M., Blomstrom-Lundqvist, C., Dobrev, D., Kirchhof, P., Pappone, C., … Vicedomini, G. G. (2016). An update on atrial fibrillation in 2014: From pathophysiology to treatment. International Journal of Cardiology, 203, 22-29. doi:10.1016/j.ijcard.2015.10.089 es_ES
dc.description.references Meyre, P., Blum, S., Berger, S., Aeschbacher, S., Schoepfer, H., Briel, M., … Conen, D. (2019). Risk of Hospital Admissions in Patients With Atrial Fibrillation: A Systematic Review and Meta-analysis. Canadian Journal of Cardiology, 35(10), 1332-1343. doi:10.1016/j.cjca.2019.05.024 es_ES
dc.description.references Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011 es_ES
dc.description.references De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040 es_ES
dc.description.references SCHUCHERT, A., BEHRENS, G., & MEINERTZ, T. (1999). Impact of Long-Term ECG Recording on the Detection of Paroxysmal Atrial Fibrillation in Patients After an Acute Ischemic Stroke. Pacing and Clinical Electrophysiology, 22(7), 1082-1084. doi:10.1111/j.1540-8159.1999.tb00574.x es_ES
dc.description.references Pagola, J., Juega, J., Francisco-Pascual, J., Moya, A., Sanchis, M., Bustamante, A., … Arenillas, J. F. (2018). Yield of atrial fibrillation detection with Textile Wearable Holter from the acute phase of stroke: Pilot study of Crypto-AF registry. International Journal of Cardiology, 251, 45-50. doi:10.1016/j.ijcard.2017.10.063 es_ES
dc.description.references Luong, D. T., Ha, N. T., & Thuan, N. D. (2019). Android Smart Phones Application in Tele-monitoring Electrocardiogram (ECG). American Journal of Biomedical Sciences, 15-21. doi:10.5099/aj190100015 es_ES
dc.description.references Haverkamp, H. T., Fosse, S. O., & Schuster, P. (2019). Accuracy and usability of single-lead ECG from smartphones - A clinical study. Indian Pacing and Electrophysiology Journal, 19(4), 145-149. doi:10.1016/j.ipej.2019.02.006 es_ES
dc.description.references Nagai, S., Anzai, D., & Wang, J. (2017). Motion artefact removals for wearable ECG using stationary wavelet transform. Healthcare Technology Letters, 4(4), 138-141. doi:10.1049/htl.2016.0100 es_ES
dc.description.references Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Reviews in Biomedical Engineering, 11, 36-52. doi:10.1109/rbme.2018.2810957 es_ES
dc.description.references Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R. G., & Clifford, G. D. (2008). Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. Journal of Biomedical Informatics, 41(3), 442-451. doi:10.1016/j.jbi.2008.03.003 es_ES
dc.description.references Bashar, S. K., Ding, E., Walkey, A. J., McManus, D. D., & Chon, K. H. (2019). Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. IEEE Access, 7, 88357-88368. doi:10.1109/access.2019.2926199 es_ES
dc.description.references Yoon, D., Lim, H. S., Jung, K., Kim, T. Y., & Lee, S. (2019). Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model. Healthcare Informatics Research, 25(3), 201. doi:10.4258/hir.2019.25.3.201 es_ES
dc.description.references Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A. E. W., & Clifford, G. D. (2015). Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters. IEEE Transactions on Biomedical Engineering, 62(9), 2125-2134. doi:10.1109/tbme.2015.2402236 es_ES
dc.description.references Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50 es_ES
dc.description.references Luo, S., & Johnston, P. (2010). A review of electrocardiogram filtering. Journal of Electrocardiology, 43(6), 486-496. doi:10.1016/j.jelectrocard.2010.07.007 es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 es_ES
dc.description.references Manikandan, M. S., & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40-44. doi:10.1049/htl.2013.0019 es_ES
dc.description.references Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). An automated ECG signal quality assessment method for unsupervised diagnostic systems. Biocybernetics and Biomedical Engineering, 38(1), 54-70. doi:10.1016/j.bbe.2017.10.002 es_ES
dc.description.references Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. IEEE Journal of Biomedical and Health Informatics, 22(3), 722-732. doi:10.1109/jbhi.2017.2686436 es_ES
dc.description.references Zhang, Q., Fu, L., & Gu, L. (2019). A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG. Computational and Mathematical Methods in Medicine, 2019, 1-12. doi:10.1155/2019/7095137 es_ES
dc.description.references Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. Journal of Healthcare Engineering, 2018, 1-8. doi:10.1155/2018/2102918 es_ES
dc.description.references Al Rahhal, M. M., Bazi, Y., Al Zuair, M., Othman, E., & BenJdira, B. (2018). Convolutional Neural Networks for Electrocardiogram Classification. Journal of Medical and Biological Engineering, 38(6), 1014-1025. doi:10.1007/s40846-018-0389-7 es_ES
dc.description.references He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., & Zhang, H. (2018). Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01206 es_ES
dc.description.references Yildirim, O., Talo, M., Ay, B., Baloglu, U. B., Aydin, G., & Acharya, U. R. (2019). Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Computers in Biology and Medicine, 113, 103387. doi:10.1016/j.compbiomed.2019.103387 es_ES
dc.description.references SINGH, S. A., & MAJUMDER, S. (2019). A NOVEL APPROACH OSA DETECTION USING SINGLE-LEAD ECG SCALOGRAM BASED ON DEEP NEURAL NETWORK. Journal of Mechanics in Medicine and Biology, 19(04), 1950026. doi:10.1142/s021951941950026x es_ES
dc.description.references Byeon, Y.-H., Pan, S.-B., & Kwak, K.-C. (2019). Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics. Sensors, 19(4), 935. doi:10.3390/s19040935 es_ES
dc.description.references Clifford, G., Liu, C., Moody, B., Lehman, L., Silva, I., Li, Q., … Mark, R. (2017). AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 2017. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.065-469 es_ES
dc.description.references Redmond, S. J., Xie, Y., Chang, D., Basilakis, J., & Lovell, N. H. (2012). Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiological Measurement, 33(9), 1517-1533. doi:10.1088/0967-3334/33/9/1517 es_ES
dc.description.references Li, T., & Zhou, M. (2016). ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy, 18(8), 285. doi:10.3390/e18080285 es_ES
dc.description.references Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751-5757. doi:10.1016/j.eswa.2010.02.033 es_ES
dc.description.references Lyon, A., Mincholé, A., Martínez, J. P., Laguna, P., & Rodriguez, B. (2018). Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. Journal of The Royal Society Interface, 15(138), 20170821. doi:10.1098/rsif.2017.0821 es_ES
dc.description.references Mincholé, A., & Rodriguez, B. (2019). Artificial intelligence for the electrocardiogram. Nature Medicine, 25(1), 22-23. doi:10.1038/s41591-018-0306-1 es_ES
dc.description.references Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116 es_ES
dc.description.references Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386 es_ES
dc.description.references Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002 es_ES
dc.description.references Zhao, Z., & Zhang, Y. (2018). SQI Quality Evaluation Mechanism of Single-Lead ECG Signal Based on Simple Heuristic Fusion and Fuzzy Comprehensive Evaluation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00727 es_ES
dc.description.references Moeyersons, J., Smets, E., Morales, J., Villa, A., De Raedt, W., Testelmans, D., … Varon, C. (2019). Artefact detection and quality assessment of ambulatory ECG signals. Computer Methods and Programs in Biomedicine, 182, 105050. doi:10.1016/j.cmpb.2019.105050 es_ES
dc.description.references Clifford, G. D., Behar, J., Li, Q., & Rezek, I. (2012). Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiological Measurement, 33(9), 1419-1433. doi:10.1088/0967-3334/33/9/1419 es_ES
dc.description.references Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., & Tarassenko, L. (2014). Signal Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2014.2338351 es_ES
dc.description.references Hayn, D., Jammerbund, B., & Schreier, G. (2012). QRS detection based ECG quality assessment. Physiological Measurement, 33(9), 1449-1461. doi:10.1088/0967-3334/33/9/1449 es_ES
dc.description.references Casey, S., Avalos, G., & Dowling, M. (2018). Critical care nurses’ knowledge of alarm fatigue and practices towards alarms: A multicentre study. Intensive and Critical Care Nursing, 48, 36-41. doi:10.1016/j.iccn.2018.05.004 es_ES
dc.description.references Nattel, S., Guasch, E., Savelieva, I., Cosio, F. G., Valverde, I., Halperin, J. L., … Camm, A. J. (2014). Early management of atrial fibrillation to prevent cardiovascular complications. European Heart Journal, 35(22), 1448-1456. doi:10.1093/eurheartj/ehu028 es_ES
dc.description.references Zhao, Z., Liu, C., Li, Y., Li, Y., Wang, J., Lin, B.-S., & Li, J. (2019). Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. IEEE Access, 7, 34060-34067. doi:10.1109/access.2019.2900719 es_ES
dc.description.references Petrėnas, A., Marozas, V., & Sörnmo, L. (2015). Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Computers in Biology and Medicine, 65, 184-191. doi:10.1016/j.compbiomed.2015.01.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem