Andersson, M., Turesson, H., Nicolia, A., Fält, A.-S., Samuelsson, M., & Hofvander, P. (2016). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117-128. doi:10.1007/s00299-016-2062-3
Bachem, C. W. B., Speckmann, G.-J., van der Linde, P. C. G., Verheggen, F. T. M., Hunt, M. D., Steffens, J. C., & Zabeau, M. (1994). Antisense Expression of Polyphenol Oxidase Genes Inhibits Enzymatic Browning in Potato Tubers. Bio/Technology, 12(11), 1101-1105. doi:10.1038/nbt1194-1101
Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-w
[+]
Andersson, M., Turesson, H., Nicolia, A., Fält, A.-S., Samuelsson, M., & Hofvander, P. (2016). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117-128. doi:10.1007/s00299-016-2062-3
Bachem, C. W. B., Speckmann, G.-J., van der Linde, P. C. G., Verheggen, F. T. M., Hunt, M. D., Steffens, J. C., & Zabeau, M. (1994). Antisense Expression of Polyphenol Oxidase Genes Inhibits Enzymatic Browning in Potato Tubers. Bio/Technology, 12(11), 1101-1105. doi:10.1038/nbt1194-1101
Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-w
Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170
Bortesi, L., Zhu, C., Zischewski, J., Perez, L., Bassié, L., Nadi, R., … Schillberg, S. (2016). Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnology Journal, 14(12), 2203-2216. doi:10.1111/pbi.12634
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3
Chi, M., Bhagwat, B., Lane, W. D., Tang, G., Su, Y., Sun, R., … Xiang, Y. (2014). Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-62
Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., … Pinello, L. (2019). CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nature Biotechnology, 37(3), 224-226. doi:10.1038/s41587-019-0032-3
Coetzer, C., Corsini, D., Love, S., Pavek, J., & Tumer, N. (2001). Control of Enzymatic Browning in Potato (Solanum tuberosum L.) by Sense and Antisense RNA from Tomato Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 49(2), 652-657. doi:10.1021/jf001217f
Cong, L., & Zhang, F. (2014). Genome Engineering Using CRISPR-Cas9 System. Methods in Molecular Biology, 197-217. doi:10.1007/978-1-4939-1862-1_10
Docimo, T., Francese, G., De Palma, M., Mennella, D., Toppino, L., Lo Scalzo, R., … Tucci, M. (2016). Insights in the Fruit Flesh Browning Mechanisms in Solanum melongena Genetic Lines with Opposite Postcut Behavior. Journal of Agricultural and Food Chemistry, 64(22), 4675-4685. doi:10.1021/acs.jafc.6b00662
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). doi:10.1126/science.1258096
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., … Zhu, J.-K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. doi:10.1038/cr.2013.114
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822-826. doi:10.1038/nbt.2623
Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., … Xia, Q. (2014). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87(1-2), 99-110. doi:10.1007/s11103-014-0263-0
García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-y
González, M. N., Massa, G. A., Andersson, M., Turesson, H., Olsson, N., Fält, A.-S., … Feingold, S. E. (2020). Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01649
Guri, A., & Sink, K. C. (1988). Agrobacterium Transformation of Eggplant. Journal of Plant Physiology, 133(1), 52-55. doi:10.1016/s0176-1617(88)80083-x
Hahn, F., & Nekrasov, V. (2018). CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Reports, 38(4), 437-441. doi:10.1007/s00299-018-2355-9
Jukanti, A. K., & Bhatt, R. (2014). Eggplant (Solanum melongena L.) polyphenol oxidase multi-gene family: a phylogenetic evaluation. 3 Biotech, 5(1), 93-99. doi:10.1007/s13205-014-0195-z
Karunarathna, N. L., Wang, H., Harloff, H., Jiang, L., & Jung, C. (2020). Elevating seed oil content in a polyploid crop by induced mutations in
SEED FATTY ACID REDUCER
genes. Plant Biotechnology Journal, 18(11), 2251-2266. doi:10.1111/pbi.13381
Kaushik, P., Gramazio, P., Vilanova, S., Raigón, M. D., Prohens, J., & Plazas, M. (2017). Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding. Food Research International, 102, 392-401. doi:10.1016/j.foodres.2017.09.028
Li, L., & Steffens, J. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215(2), 239-247. doi:10.1007/s00425-002-0750-4
Li, Z., Liu, Z.-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., … Cigan, A. M. (2015). Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiology, 169(2), 960-970. doi:10.1104/pp.15.00783
Llorente, B., Alonso, G. D., Bravo-Almonacid, F., Rodríguez, V., López, M. G., Carrari, F., … Flawiá, M. M. (2011). Safety assessment of nonbrowning potatoes: opening the discussion about the relevance of substantial equivalence on next generation biotech crops. Plant Biotechnology Journal, 9(2), 136-150. doi:10.1111/j.1467-7652.2010.00534.x
Llorente, B., López, M. G., Carrari, F., Asís, R., Di Paola Naranjo, R. D., Flawiá, M. M., … Bravo-Almonacid, F. (2014). Downregulation of polyphenol oxidase in potato tubers redirects phenylpropanoid metabolism enhancing chlorogenate content and late blight resistance. Molecular Breeding, 34(4), 2049-2063. doi:10.1007/s11032-014-0162-8
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., … Liu, Y.-G. (2015). A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Molecular Plant, 8(8), 1274-1284. doi:10.1016/j.molp.2015.04.007
Mahanil, S., Attajarusit, J., Stout, M. J., & Thipyapong, P. (2008). Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Science, 174(4), 456-466. doi:10.1016/j.plantsci.2008.01.006
Menin, B., Moglia, A., Comino, C., Hakkert, J. C., Lanteri, S., & Beekwilder, J. (2013). In vitrocallus-induction in globe artichoke (Cynara cardunculusL. var.scolymus) as a system for the production of caffeoylquinic acids. The Journal of Horticultural Science and Biotechnology, 88(5), 537-542. doi:10.1080/14620316.2013.11513003
Mennella, G., Lo Scalzo, R., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Rotino, G. L. (2012). Chemical and Bioactive Quality Traits During Fruit Ripening in Eggplant (S. melongena L.) and Allied Species. Journal of Agricultural and Food Chemistry, 60(47), 11821-11831. doi:10.1021/jf3037424
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., … Qu, L.-J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233-1236. doi:10.1038/cr.2013.123
Mishra, B. B., Gautam, S., & Sharma, A. (2013). Free phenolics and polyphenol oxidase (PPO): The factors affecting post-cut browning in eggplant (Solanum melongena). Food Chemistry, 139(1-4), 105-114. doi:10.1016/j.foodchem.2013.01.074
Muktadir, M. A., Habib, M. A., Khaleque Mian, M. A., & Yousuf Akhond, M. A. (2016). Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.). Agriculture and Natural Resources, 50(1), 38-42. doi:10.1016/j.anres.2014.10.001
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., … XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67-74. doi:10.1016/j.biopha.2017.10.064
Nonaka, S., Arai, C., Takayama, M., Matsukura, C., & Ezura, H. (2017). Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 7(1). doi:10.1038/s41598-017-06400-y
Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., … Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(1). doi:10.1038/srep24765
Peterson, B. A., Haak, D. C., Nishimura, M. T., Teixeira, P. J. P. L., James, S. R., Dangl, J. L., & Nimchuk, Z. L. (2016). Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLOS ONE, 11(9), e0162169. doi:10.1371/journal.pone.0162169
Plazas, M., López-Gresa, M. P., Vilanova, S., Torres, C., Hurtado, M., Gramazio, P., … Prohens, J. (2013). Diversity and Relationships in Key Traits for Functional and Apparent Quality in a Collection of Eggplant: Fruit Phenolics Content, Antioxidant Activity, Polyphenol Oxidase Activity, and Browning. Journal of Agricultural and Food Chemistry, 61(37), 8871-8879. doi:10.1021/jf402429k
Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638
Rommens, C. M., Ye, J., Richael, C., & Swords, K. (2006). Improving Potato Storage and Processing Characteristics through All-Native DNA Transformation. Journal of Agricultural and Food Chemistry, 54(26), 9882-9887. doi:10.1021/jf062477l
Rotino, G. L., Sala, T., & Toppino, L. (2013). Eggplant. Alien Gene Transfer in Crop Plants, Volume 2, 381-409. doi:10.1007/978-1-4614-9572-7_16
Saini, D. K., & Kaushik, P. (2019). Visiting eggplant from a biotechnological perspective: A review. Scientia Horticulturae, 253, 327-340. doi:10.1016/j.scienta.2019.04.042
Sashidhar, N., Harloff, H. J., Potgieter, L., & Jung, C. (2020). Gene editing of three
BnITPK
genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnology Journal, 18(11), 2241-2250. doi:10.1111/pbi.13380
Shetty, S. M., Chandrashekar, A., & Venkatesh, Y. P. (2011). Eggplant polyphenol oxidase multigene family: Cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry, 72(18), 2275-2287. doi:10.1016/j.phytochem.2011.08.028
Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 169(2), 931-945. doi:10.1104/pp.15.00793
Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M., Pavan, S., & Montemurro, C. (2017). Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. International Journal of Molecular Sciences, 18(2), 377. doi:10.3390/ijms18020377
Thipyapong, P., Hunt, M. D., & Steffens, J. C. (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220(1), 105-117. doi:10.1007/s00425-004-1330-6
Thipyapong, P., Joel, D. M., & Steffens, J. C. (1997). Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development. Plant Physiology, 113(3), 707-718. doi:10.1104/pp.113.3.707
Van Eck, J. (2018). Genome editing and plant transformation of solanaceous food crops. Current Opinion in Biotechnology, 49, 35-41. doi:10.1016/j.copbio.2017.07.012
Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0
Wolt, J. D., Wang, K., & Yang, B. (2015). The Regulatory Status of Genome‐edited Crops. Plant Biotechnology Journal, 14(2), 510-518. doi:10.1111/pbi.12444
Zhang, Q., Xing, H.-L., Wang, Z.-P., Zhang, H.-Y., Yang, F., Wang, X.-C., & Chen, Q.-J. (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology, 96(4-5), 445-456. doi:10.1007/s11103-018-0709-x
Zheng, N., Li, T., Dittman, J. D., Su, J., Li, R., Gassmann, W., … Yang, B. (2020). CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00800
[-]