- -

Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro-Real, Carla es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2021-06-16T03:30:23Z
dc.date.available 2021-06-16T03:30:23Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0963-9969 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168034
dc.description.abstract [EN] Wall rocket (Diplotaxis erucoides) is a wild edible herb traditionally consumed in the Mediterranean regions with a characteristic, pungent flavour. However, little is known about its acceptance as a potential new crop. In the present study, an hedonic test with 98 volunteers was performed in order to evaluate the potential of wall rocket as a new crop. Three products were tested corresponding to microgreens, seedlings and baby-leaves. The volatile constituents were also studied due to their probable influence on acceptance, and compared to Dijon's mustard and wasabi. The degree of acceptance was mainly related to taste and pungency. Microgreens were well accepted, whereas seedlings and baby-leaves were mainly appreciated by individuals that enjoy pungent tastes. The purchase intent was also highly related to the acceptance of taste and pungency. The volatiles profile revealed that wall rocket was rich in allyl isothiocyanate, like mustard and wasabi. This compound may be greatly responsible of the relationship between the acceptance of mustard, wasabi and wall rocket. Microgreens displayed the highest levels of isothiocyanates, although the quantity of product tested by panellists did not probably allow the appreciation of such compounds. In baby-leaves, a significant decrease in isothiocyanates GC area and relative abundances was observed. These results suggest that wall rocket microgreens would be accepted by a significant proportion of the general public since pungency is lowly perceived in the product, despite its high levels of isothiocyanates. By contrast, baby-leaves may become a crop for a cohort of consumers that enjoy pungent flavours. es_ES
dc.description.sponsorship C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for its financial support with a PhD grant (FPU14-06798). Authors also thank Dr. A.M. Adalid and Dr. C.K. Pires for support in the tasting session, and Ms. E. Moreno for assistance with the GC-MS analysis. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Research International es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Affective test es_ES
dc.subject Allyl isothiocyanate es_ES
dc.subject Baby-leaves es_ES
dc.subject GC-MS es_ES
dc.subject Microgreens es_ES
dc.subject New crops es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification GENETICA es_ES
dc.title Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foodres.2020.109008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Guijarro-Real, C.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International. 132:1-9. https://doi.org/10.1016/j.foodres.2020.109008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foodres.2020.109008 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 132 es_ES
dc.identifier.pmid 32331664 es_ES
dc.relation.pasarela S\390378 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019 es_ES
dc.description.references Angelino, D., Dosz, E. B., Sun, J., Hoeflinger, J. L., Van Tassell, M. L., Chen, P., … Jeffery, E. H. (2015). Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00831 es_ES
dc.description.references Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076 es_ES
dc.description.references Bell, L., Methven, L., & Wagstaff, C. (2017). The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chemistry, 222, 6-17. doi:10.1016/j.foodchem.2016.11.153 es_ES
dc.description.references Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990 es_ES
dc.description.references Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043 es_ES
dc.description.references Bell, L., & Wagstaff, C. (2017). Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. Journal of Agricultural and Food Chemistry, 65(43), 9379-9403. doi:10.1021/acs.jafc.7b03628 es_ES
dc.description.references Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154 es_ES
dc.description.references Bennett, R. N., Rosa, E. A. S., Mellon, F. A., & Kroon, P. A. (2006). Ontogenic Profiling of Glucosinolates, Flavonoids, and Other Secondary Metabolites in Eruca sativa (Salad Rocket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). Journal of Agricultural and Food Chemistry, 54(11), 4005-4015. doi:10.1021/jf052756t es_ES
dc.description.references Bonasia, A., Lazzizera, C., Elia, A., & Conversa, G. (2017). Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00300 es_ES
dc.description.references CARDELLO, A. V., & SCHUTZ, H. G. (2004). RESEARCH NOTE NUMERICAL SCALE-POINT LOCATIONS FOR CONSTRUCTING THE LAM (LABELED AFFECTIVE MAGNITUDE) SCALE. Journal of Sensory Studies, 19(4), 341-346. doi:10.1111/j.1745-459x.2004.tb00152.x es_ES
dc.description.references Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519 es_ES
dc.description.references D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019 es_ES
dc.description.references D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507 es_ES
dc.description.references Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022 es_ES
dc.description.references Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337-347. doi:10.1016/j.molmed.2012.04.003 es_ES
dc.description.references Dinnella, C., Torri, L., Caporale, G., & Monteleone, E. (2014). An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Research International, 59, 108-116. doi:10.1016/j.foodres.2014.02.009 es_ES
dc.description.references Evans, R., & Irving, M. (2018). Forager. https://www.forager.org.uk/ (accessed 30th March 2019). es_ES
dc.description.references Gols, R., van Dam, N. M., Reichelt, M., Gershenzon, J., Raaijmakers, C. E., Bullock, J. M., & Harvey, J. A. (2018). Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology, 28(3), 77-89. doi:10.1007/s00049-018-0258-4 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2013). Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. Journal of Ethnopharmacology, 146(3), 659-680. doi:10.1016/j.jep.2013.01.036 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 es_ES
dc.description.references Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858 es_ES
dc.description.references Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013 es_ES
dc.description.references Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., & Fita, A. (2018). Importance of the growing system in the leaf morphology of Diplotaxis erucoides. Acta Horticulturae, (1202), 25-32. doi:10.17660/actahortic.2018.1202.4 es_ES
dc.description.references Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778 es_ES
dc.description.references Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054 es_ES
dc.description.references Huang, L., Li, B.-L., He, C.-X., Zhao, Y.-J., Yang, X.-L., Pang, B., … Shan, Y.-J. (2018). Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. Journal of Functional Foods, 41, 118-126. doi:10.1016/j.jff.2017.12.034 es_ES
dc.description.references Ishida, M., Hara, M., Fukino, N., Kakizaki, T., & Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64(1), 48-59. doi:10.1270/jsbbs.64.48 es_ES
dc.description.references Licata, M., Tuttolomondo, T., Leto, C., Virga, G., Bonsangue, G., Cammalleri, I., … La Bella, S. (2016). A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks. Journal of Ethnobiology and Ethnomedicine, 12(1). doi:10.1186/s13002-015-0074-7 es_ES
dc.description.references López-Chillón, M. T., Carazo-Díaz, C., Prieto-Merino, D., Zafrilla, P., Moreno, D. A., & Villaño, D. (2019). Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition, 38(2), 745-752. doi:10.1016/j.clnu.2018.03.006 es_ES
dc.description.references López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188 es_ES
dc.description.references Łuczaj, Ł., Pieroni, A., Tardío, J., Pardo-de-Santayana, M., Sõukand, R., Svanberg, I., & Kalle, R. (2012). Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae, 81(4), 359-370. doi:10.5586/asbp.2012.031 es_ES
dc.description.references MA, Y., SONG, D., WANG, Z., JIANG, J., JIANG, T., CUI, F., & FAN, X. (2010). EFFECT OF ULTRAHIGH PRESSURE TREATMENT ON VOLATILE COMPOUNDS IN GARLIC. Journal of Food Process Engineering, 34(6), 1915-1930. doi:10.1111/j.1745-4530.2009.00502.x es_ES
dc.description.references Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 es_ES
dc.description.references Molina-Calle, M., Priego-Capote, F., & Luque de Castro, M. D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. LWT, 80, 98-105. doi:10.1016/j.lwt.2017.02.010 es_ES
dc.description.references Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001 es_ES
dc.description.references Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535 es_ES
dc.description.references Pinela, J., Carvalho, A. M., & Ferreira, I. C. F. R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology, 110, 165-188. doi:10.1016/j.fct.2017.10.020 es_ES
dc.description.references Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006 es_ES
dc.description.references SCHUTZ, H. G., & CARDELLO, A. V. (2001). A LABELED AFFECTIVE MAGNITUDE (LAM) SCALE FOR ASSESSING FOOD LIKING/DISLIKING. Journal of Sensory Studies, 16(2), 117-159. doi:10.1111/j.1745-459x.2001.tb00293.x es_ES
dc.description.references Sdiri, S., Rambla, J. L., Besada, C., Granell, A., & Salvador, A. (2017). Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Biology and Technology, 133, 48-56. doi:10.1016/j.postharvbio.2017.07.001 es_ES
dc.description.references Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841 es_ES
dc.description.references Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1 es_ES
dc.description.references Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644-7651. doi:10.1021/jf300459b es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem