- -

Augmenting data with GANs to segment melanoma skin lesions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Augmenting data with GANs to segment melanoma skin lesions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pollastri, Federico es_ES
dc.contributor.author Bolelli, Federico es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Grana, Costantino es_ES
dc.date.accessioned 2021-06-18T03:33:41Z
dc.date.available 2021-06-18T03:33:41Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 1380-7501 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168114
dc.description.abstract [EN] This paper presents a novel strategy that employs Generative Adversarial Networks (GANs) to augment data in the skin lesion segmentation task, which is a fundamental first step in the automated melanoma detection process. The proposed framework generates both skin lesion images and their segmentation masks, making the data augmentation process extremely straightforward. In order to thoroughly analyze how the quality and diversity of synthetic images impact the efficiency of the method, we remodel two different well known GANs: a Deep Convolutional GAN (DCGAN) and a Laplacian GAN (LAPGAN). Experimental results reveal that, by introducing such kind of synthetic data into the training process, the overall accuracy of a state-of-the-art Convolutional/Deconvolutional Neural Network for melanoma skin lesion segmentation is increased. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Multimedia Tools and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep learning es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Adversarial learning es_ES
dc.subject Skin lesion segmentation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Augmenting data with GANs to segment melanoma skin lesions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11042-019-7717-y es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Pollastri, F.; Bolelli, F.; Paredes Palacios, R.; Grana, C. (2020). Augmenting data with GANs to segment melanoma skin lesions. Multimedia Tools and Applications. 79(21-22):15575-15592. https://doi.org/10.1007/s11042-019-7717-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11042-019-7717-y es_ES
dc.description.upvformatpinicio 15575 es_ES
dc.description.upvformatpfin 15592 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 79 es_ES
dc.description.issue 21-22 es_ES
dc.relation.pasarela S\424152 es_ES
dc.description.references Antoniou A, Storkey A, Edwards H (2017) Data augmentation generative adversarial networks, arXiv: 1711.04340 es_ES
dc.description.references Baur C, Albarqouni S, Navab N (2018) MelanoGANs: high resolution skin lesion synthesis with GANs, arXiv: 1804.04338 es_ES
dc.description.references Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828 es_ES
dc.description.references Bolelli F, Baraldi L, Cancilla M, Grana C (2018) Connected components labeling on DRAGs. In: International conference on pattern recognition es_ES
dc.description.references Bolelli F, Cancilla M, Grana C (2017) Two more strategies to speed up connected components labeling algorithms. In: International conference on image analysis and processing. Springer, pp 48–58 es_ES
dc.description.references Celebi ME, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G (2015) A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy Image Analysis 10:97–129 es_ES
dc.description.references Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2017) Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), arXiv: 1710.05006 es_ES
dc.description.references Denton EL, Chintala S, Fergus R et al (2015) Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in neural information processing systems, pp 1486–1494 es_ES
dc.description.references Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680 es_ES
dc.description.references Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv: 1502.03167 es_ES
dc.description.references Kingma DP, Ba J (2014) Adam: a method for stochastic optimization, arXiv: 1412.6980 es_ES
dc.description.references Kittler H, Pehamberger H, Wolff K, Binder M (2002) Diagnostic accuracy of dermoscopy. Lancet Oncol 3(3):159–165 es_ES
dc.description.references Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 es_ES
dc.description.references Lipkus AH (1999) A proof of the triangle inequality for the Tanimoto distance. J Math Chem 26(1):263–265. https://doi.org/10.1023/A:1019154432472 es_ES
dc.description.references Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88 es_ES
dc.description.references Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. In: Twenty-fourth international joint conference on artificial intelligence es_ES
dc.description.references Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115 es_ES
dc.description.references Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 es_ES
dc.description.references Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on deep learning for audio, speech, and language processing (WDLASL 2013) es_ES
dc.description.references Mishkin D, Matas J (2016) All you need is a good init. In: International conference on learning representations (ICLR) 2016 es_ES
dc.description.references Neff T, Payer C, Štern D, Urschler M (2017) Generative adversarial network based synthesis for supervised medical image segmentation. In: OAGM & ARW Joint workshop 2017 on “vision, automation & robotics”. Verlag der Technischen Universität Graz es_ES
dc.description.references Pollastri F, Bolelli F, Grana C (2018) Improving skin lesion segmentation with generative adversarial networks. In: 31St international symposium on computer-based medical systems es_ES
dc.description.references Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks,. arXiv: 1511.06434 es_ES
dc.description.references Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 es_ES
dc.description.references Springenberg JT (2015) Unsupervised and semi-supervised learning with categorical generative adversarial networks, arXiv: 1511.06390 es_ES
dc.description.references Yuan Y, Chao M, Lo YC (2017) Automatic skin lesion segmentation with fully convolutional-deconvolutional networks, arXiv: 1703.05165 es_ES
dc.description.references Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 2018–2025 es_ES
dc.description.references Zheng Z, Zheng L, Yang Y (2017) Unlabeled samples generated by GAN improve the person re-identification baseline in vitro, vol 3. arXiv: 1701.07717 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem