Baños, R., Ortega, J., Gil, C., Márquez, A. L., & de Toro, F. (2013). A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Computers & Industrial Engineering, 65(2), 286-296. doi:10.1016/j.cie.2013.01.007
Attea, B. A., Khalil, E. A., & Cosar, A. (2014). Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks. Soft Computing, 19(10), 2983-2995. doi:10.1007/s00500-014-1462-y
Benavent, E., Corberán, Á., Desaulniers, G., Lessard, F., Plana, I., & Sanchis, J. M. (2013). A branch-price-and-cut algorithm for the min-maxk-vehicle windy rural postman problem. Networks, 63(1), 34-45. doi:10.1002/net.21520
[+]
Baños, R., Ortega, J., Gil, C., Márquez, A. L., & de Toro, F. (2013). A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Computers & Industrial Engineering, 65(2), 286-296. doi:10.1016/j.cie.2013.01.007
Attea, B. A., Khalil, E. A., & Cosar, A. (2014). Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks. Soft Computing, 19(10), 2983-2995. doi:10.1007/s00500-014-1462-y
Benavent, E., Corberán, Á., Desaulniers, G., Lessard, F., Plana, I., & Sanchis, J. M. (2013). A branch-price-and-cut algorithm for the min-maxk-vehicle windy rural postman problem. Networks, 63(1), 34-45. doi:10.1002/net.21520
Benavent, E., Corberán, A., Piñana, E., Plana, I., & Sanchis, J. M. (2005). New heuristic algorithms for the windy rural postman problem. Computers & Operations Research, 32(12), 3111-3128. doi:10.1016/j.cor.2004.04.007
Benavent, E., Corberán, A., Plana, I., & Sanchis, J. M. (2009). Min-Max K
-vehicles windy rural postman problem. Networks, 54(4), 216-226. doi:10.1002/net.20334
Benavent, E., Corberán, A., Plana, I., & Sanchis, J. M. (2011). New facets and an enhanced branch-and-cut for the min-max K
-vehicles windy rural postman problem. Networks, 58(4), 255-272. doi:10.1002/net.20469
Benavent, E., Corberán, Á., & Sanchis, J. M. (2009). A metaheuristic for the min–max windy rural postman problem with K vehicles. Computational Management Science, 7(3), 269-287. doi:10.1007/s10287-009-0119-2
Bode, C., & Irnich, S. (2012). Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem. Operations Research, 60(5), 1167-1182. doi:10.1287/opre.1120.1079
Bräysy, O., & Hasle, G. (2014). Chapter 12: Software Tools and Emerging Technologies for Vehicle Routing and Intermodal Transportation. Vehicle Routing, 351-380. doi:10.1137/1.9781611973594.ch12
Constantino, M., Gouveia, L., Mourão, M. C., & Nunes, A. C. (2015). The mixed capacitated arc routing problem with non-overlapping routes. European Journal of Operational Research, 244(2), 445-456. doi:10.1016/j.ejor.2015.01.042
Cordeau, J.-F. (2006). A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations Research, 54(3), 573-586. doi:10.1287/opre.1060.0283
Gulczynski, D., Golden, B., & Wasil, E. (2011). The period vehicle routing problem: New heuristics and real-world variants. Transportation Research Part E: Logistics and Transportation Review, 47(5), 648-668. doi:10.1016/j.tre.2011.02.002
He, R., Xu, W., Sun, J., & Zu, B. (2009). Balanced K-Means Algorithm for Partitioning Areas in Large-Scale Vehicle Routing Problem. 2009 Third International Symposium on Intelligent Information Technology Application. doi:10.1109/iita.2009.307
Janssens, J., Van den Bergh, J., Sörensen, K., & Cattrysse, D. (2015). Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning. European Journal of Operational Research, 242(1), 222-231. doi:10.1016/j.ejor.2014.09.026
G. Karypis V. Kumar METIS-unstructured graph partitioning and sparse matrix ordering system
Karypis, G., & Kumar, V. (1998). A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1), 359-392. doi:10.1137/s1064827595287997
Lu, Q., & Dessouky, M. M. (2006). A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows. European Journal of Operational Research, 175(2), 672-687. doi:10.1016/j.ejor.2005.05.012
Lum, O., Cerrone, C., Golden, B., & Wasil, E. (2017). Partitioning a street network into compact, balanced, and visually appealing routes. Networks, 69(3), 290-303. doi:10.1002/net.21730
Magaia, N., Horta, N., Neves, R., Pereira, P. R., & Correia, M. (2015). A multi-objective routing algorithm for Wireless Multimedia Sensor Networks. Applied Soft Computing, 30, 104-112. doi:10.1016/j.asoc.2015.01.052
Mandal, S. K., Pacciarelli, D., Løkketangen, A., & Hasle, G. (2015). A memetic NSGA-II for the bi-objective mixed capacitated general routing problem. Journal of Heuristics, 21(3), 359-390. doi:10.1007/s10732-015-9280-7
Matis, P. (2008). DECISION SUPPORT SYSTEM FOR SOLVING THE STREET ROUTING PROBLEM. TRANSPORT, 23(3), 230-235. doi:10.3846/1648-4142.2008.23.230-235
Melián-Batista, B., De Santiago, A., AngelBello, F., & Alvarez, A. (2014). A bi-objective vehicle routing problem with time windows: A real case in Tenerife. Applied Soft Computing, 17, 140-152. doi:10.1016/j.asoc.2013.12.012
Ombuki, B., Ross, B. J., & Hanshar, F. (2006). Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows. Applied Intelligence, 24(1), 17-30. doi:10.1007/s10489-006-6926-z
Poot, A., Kant, G., & Wagelmans, A. P. M. (2002). A savings based method for real-life vehicle routing problems. Journal of the Operational Research Society, 53(1), 57-68. doi:10.1057/palgrave/jors/2601252
[-]