- -

Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ORTIZ, V. es_ES
dc.contributor.author del Tejo Catala, Omar es_ES
dc.contributor.author Salvador Igual, Ismael es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2021-06-19T03:30:36Z
dc.date.available 2021-06-19T03:30:36Z
dc.date.issued 2020-09-28 es_ES
dc.identifier.issn 1729-8806 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168157
dc.description.abstract [EN] Pedestrian detection is a particular case of object detection that helps to reduce accidents in advanced driver-assistance systems and autonomous vehicles. It is not an easy task because of the variability of the objects and the time constraints. A performance comparison of object detection methods, including both GPU and non-GPU implementations over a variety of on-road specific databases, is provided. Computer vision multi-class object detection can be integrated on sensor fusion modules where recall is preferred over precision. For this reason, ad hoc training with a single class for pedestrians has been performed and we achieved a significant increase in recall. Experiments have been carried out on several architectures and a special effort has been devoted to achieve a feasible computational time for a real-time system. Finally, an analysis of the input image size allows to fine-tune the model and get better results with practical costs. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by PRYSTINE project which had received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Programme and National Authorities, under grant agreement no. 783190. It was also funded by Generalitat Valenciana through the Instituto Valenciano de Competitividad Empresarial (IVACE). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Advanced Robotic Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Object detection es_ES
dc.subject Artificial intelligence es_ES
dc.subject Machine learning es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Resource-constrained hardware es_ES
dc.subject One-stage detectors es_ES
dc.subject Advanced driver-assistance systems es_ES
dc.subject Vulnerable road users es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1729881420929175 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/783190/EU/Programmable Systems for Intelligence in Automobiles/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Ortiz, V.; Del Tejo Catala, O.; Salvador Igual, I.; Perez-Cortes, J. (2020). Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases. International Journal of Advanced Robotic Systems. 17(5). https://doi.org/10.1177/1729881420929175 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1729881420929175 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\420861 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460 es_ES
dc.description.references Viola, P., Jones, M. J., & Snow, D. (2005). Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), 153-161. doi:10.1007/s11263-005-6644-8 es_ES
dc.description.references Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1532-1545. doi:10.1109/tpami.2014.2300479 es_ES
dc.description.references Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743-761. doi:10.1109/tpami.2011.155 es_ES
dc.description.references Munder, S., & Gavrila, D. M. (2006). An Experimental Study on Pedestrian Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1863-1868. doi:10.1109/tpami.2006.217 es_ES
dc.description.references Enzweiler, M., & Gavrila, D. M. (2009). Monocular Pedestrian Detection: Survey and Experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2179-2195. doi:10.1109/tpami.2008.260 es_ES
dc.description.references He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916. doi:10.1109/tpami.2015.2389824 es_ES
dc.description.references McGehee, D. V., Mazzae, E. N., & Baldwin, G. H. S. (2000). Driver Reaction Time in Crash Avoidance Research: Validation of a Driving Simulator Study on a Test Track. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(20), 3-320-3-323. doi:10.1177/154193120004402026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem