Mostrar el registro sencillo del ítem
dc.contributor.author | ORTIZ, V. | es_ES |
dc.contributor.author | del Tejo Catala, Omar | es_ES |
dc.contributor.author | Salvador Igual, Ismael | es_ES |
dc.contributor.author | Perez-Cortes, Juan-Carlos | es_ES |
dc.date.accessioned | 2021-06-19T03:30:36Z | |
dc.date.available | 2021-06-19T03:30:36Z | |
dc.date.issued | 2020-09-28 | es_ES |
dc.identifier.issn | 1729-8806 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168157 | |
dc.description.abstract | [EN] Pedestrian detection is a particular case of object detection that helps to reduce accidents in advanced driver-assistance systems and autonomous vehicles. It is not an easy task because of the variability of the objects and the time constraints. A performance comparison of object detection methods, including both GPU and non-GPU implementations over a variety of on-road specific databases, is provided. Computer vision multi-class object detection can be integrated on sensor fusion modules where recall is preferred over precision. For this reason, ad hoc training with a single class for pedestrians has been performed and we achieved a significant increase in recall. Experiments have been carried out on several architectures and a special effort has been devoted to achieve a feasible computational time for a real-time system. Finally, an analysis of the input image size allows to fine-tune the model and get better results with practical costs. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by PRYSTINE project which had received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union's H2020 Framework Programme and National Authorities, under grant agreement no. 783190. It was also funded by Generalitat Valenciana through the Instituto Valenciano de Competitividad Empresarial (IVACE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Advanced Robotic Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Object detection | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Resource-constrained hardware | es_ES |
dc.subject | One-stage detectors | es_ES |
dc.subject | Advanced driver-assistance systems | es_ES |
dc.subject | Vulnerable road users | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1729881420929175 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/783190/EU/Programmable Systems for Intelligence in Automobiles/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Ortiz, V.; Del Tejo Catala, O.; Salvador Igual, I.; Perez-Cortes, J. (2020). Real-time on-board pedestrian detection using generic single-stage algorithms and on-road databases. International Journal of Advanced Robotic Systems. 17(5). https://doi.org/10.1177/1729881420929175 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1729881420929175 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\420861 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Zhang, S., Benenson, R., Omran, M., Hosang, J., & Schiele, B. (2018). Towards Reaching Human Performance in Pedestrian Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 973-986. doi:10.1109/tpami.2017.2700460 | es_ES |
dc.description.references | Viola, P., Jones, M. J., & Snow, D. (2005). Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), 153-161. doi:10.1007/s11263-005-6644-8 | es_ES |
dc.description.references | Dollar, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 1532-1545. doi:10.1109/tpami.2014.2300479 | es_ES |
dc.description.references | Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian Detection: An Evaluation of the State of the Art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743-761. doi:10.1109/tpami.2011.155 | es_ES |
dc.description.references | Munder, S., & Gavrila, D. M. (2006). An Experimental Study on Pedestrian Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1863-1868. doi:10.1109/tpami.2006.217 | es_ES |
dc.description.references | Enzweiler, M., & Gavrila, D. M. (2009). Monocular Pedestrian Detection: Survey and Experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2179-2195. doi:10.1109/tpami.2008.260 | es_ES |
dc.description.references | He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904-1916. doi:10.1109/tpami.2015.2389824 | es_ES |
dc.description.references | McGehee, D. V., Mazzae, E. N., & Baldwin, G. H. S. (2000). Driver Reaction Time in Crash Avoidance Research: Validation of a Driving Simulator Study on a Test Track. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(20), 3-320-3-323. doi:10.1177/154193120004402026 | es_ES |