Mostrar el registro sencillo del ítem
dc.contributor.author | Pleguezuelos-Villa, María | es_ES |
dc.contributor.author | Díez-Sales, Octavio | es_ES |
dc.contributor.author | Manca, M.L. | es_ES |
dc.contributor.author | Manconi, Maria | es_ES |
dc.contributor.author | Saurí, A.R. | es_ES |
dc.contributor.author | Escribano-Ferrer, E. | es_ES |
dc.contributor.author | NÁCHER ALONSO, Mª AMPARO | es_ES |
dc.date.accessioned | 2021-06-23T03:30:37Z | |
dc.date.available | 2021-06-23T03:30:37Z | |
dc.date.issued | 2020-01-05 | es_ES |
dc.identifier.issn | 0378-5173 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168335 | |
dc.description.abstract | [EN] Mangiferin, a natural compound isolated from Mangifera indica L, was incorporated in glycerosomes, ethosomes and alternatively in glycerol-ethanol phospholipid vesicles (glycethosomes). Actually, only glycethosomes were able to stably incorporate the mangiferin that was loaded at increasing concentrations (2, 4, 6, 8 mg/mL). The morphology, size distribution, rheological properties, surface charge and entrapment efficiency of prepared vesicles were deeply measured. All vesicles were mainly spherical, oligolamellar, small in size (similar to 145 nm) and negatively charged (similar to-40 mV), as confirmed by cryo-TEM observation and dynamic laser light scattering measurements. The higher concentration of mangiferin (8 mg/mL) allowed an increase of vesicle mean diameter up to similar to 288 nm. The entrapment efficiency was inversely proportional to the amount of loaded mangiferin. In vitro studies performed by using human abdominal skin, underlined that, the dose-dependent ability of vesicles to promote mangiferin retention in epidermis. In addition, glycethosomes were highly biocompatible and showed a strong ability to protect in vitro the fibroblasts against damages induced by hydrogen peroxide. In vivo results underlined the superior ability of mangiferin loaded glycethosomes respect to the mangiferin dispersion to promote the heal of the wound induced by TPA, confirming their potential application for the treatment of psoriasis or other skin disorders. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Pharmaceutics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mangiferin | es_ES |
dc.subject | Phospholipid vesicles | es_ES |
dc.subject | Glycethosomes | es_ES |
dc.subject | Antioxidant | es_ES |
dc.subject | Skin permeation | es_ES |
dc.subject | Psoriasis | es_ES |
dc.title | Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijpharm.2019.118844 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Pleguezuelos-Villa, M.; Díez-Sales, O.; Manca, M.; Manconi, M.; Saurí, A.; Escribano-Ferrer, E.; Nácher Alonso, MA. (2020). Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis. International Journal of Pharmaceutics. 573:1-8. https://doi.org/10.1016/j.ijpharm.2019.118844 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijpharm.2019.118844 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 573 | es_ES |
dc.identifier.pmid | 31751638 | es_ES |
dc.relation.pasarela | S\436558 | es_ES |
dc.description.references | Abrahams, S., Haylett, W. L., Johnson, G., Carr, J. A., & Bardien, S. (2019). Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 406, 1-21. doi:10.1016/j.neuroscience.2019.02.020 | es_ES |
dc.description.references | Alves, M. P., Scarrone, A. L., Santos, M., Pohlmann, A. R., & Guterres, S. S. (2007). Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. International Journal of Pharmaceutics, 341(1-2), 215-220. doi:10.1016/j.ijpharm.2007.03.031 | es_ES |
dc.description.references | Angelova-Fischer, I., Rippke, F., Richter, D., Filbry, A., Arrowitz, C., Weber, T., … Zillikens, D. (2018). Stand-alone Emollient Treatment Reduces Flares After Discontinuation of Topical Steroid Treatment in Atopic Dermatitis: A Double-blind, Randomized, Vehicle-controlled, Left-right Comparison Study. Acta Dermato Venereologica, 98(5), 517-523. doi:10.2340/00015555-2882 | es_ES |
dc.description.references | Doppalapudi, S., Mahira, S., & Khan, W. (2017). Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. Journal of Photochemistry and Photobiology B: Biology, 174, 44-57. doi:10.1016/j.jphotobiol.2017.07.007 | es_ES |
dc.description.references | Eichenfield, L. F., Tom, W. L., Berger, T. G., Krol, A., Paller, A. S., Schwarzenberger, K., … Sidbury, R. (2014). Guidelines of care for the management of atopic dermatitis. Journal of the American Academy of Dermatology, 71(1), 116-132. doi:10.1016/j.jaad.2014.03.023 | es_ES |
dc.description.references | Furue, M., Uchi, H., Mitoma, C., Hashimoto-Hachiya, A., Chiba, T., Ito, T., … Tsuji, G. (2017). Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2. Nutrients, 9(3), 223. doi:10.3390/nu9030223 | es_ES |
dc.description.references | Guo, H.-W., Yun, C.-X., Hou, G.-H., Du, J., Huang, X., Lu, Y., … Deng, J.-G. (2014). Mangiferin Attenuates Th1/Th2 Cytokine Imbalance in an Ovalbumin-Induced Asthmatic Mouse Model. PLoS ONE, 9(6), e100394. doi:10.1371/journal.pone.0100394 | es_ES |
dc.description.references | Huang, C., Quinn, D., Sadovsky, Y., Suresh, S., & Hsia, K. J. (2017). Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of Sciences, 114(11), 2910-2915. doi:10.1073/pnas.1702065114 | es_ES |
dc.description.references | Hussain, A., Singh, S., Sharma, D., Webster, T., Shafaat, K., & Faruk, A. (2017). Elastic liposomes as novel carriers: recent advances in drug delivery. International Journal of Nanomedicine, Volume 12, 5087-5108. doi:10.2147/ijn.s138267 | es_ES |
dc.description.references | Imran, M., Arshad, M. S., Butt, M. S., Kwon, J.-H., Arshad, M. U., & Sultan, M. T. (2017). Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids in Health and Disease, 16(1). doi:10.1186/s12944-017-0449-y | es_ES |
dc.description.references | Lai, R., Xian, D., Xiong, X., Yang, L., Song, J., & Zhong, J. (2018). Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Report, 23(1), 130-135. doi:10.1080/13510002.2018.1462027 | es_ES |
dc.description.references | Manca, M. L., Matricardi, P., Cencetti, C., Peris, J. E., Melis, V., Carbone, C., … Manconi, M. (2016). Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. International Journal of Pharmaceutics, 505(1-2), 204-211. doi:10.1016/j.ijpharm.2016.04.008 | es_ES |
dc.description.references | Manconi, M., Manca, M. L., Caddeo, C., Valenti, D., Cencetti, C., Diez-Sales, O., … Matricardi, P. (2018). Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine: Nanotechnology, Biology and Medicine, 14(2), 569-579. doi:10.1016/j.nano.2017.12.001 | es_ES |
dc.description.references | Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Silva, T. C. C., Caviglione, C. V., Bottura, C., … Casagrande, R. (2016). Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice. PLOS ONE, 11(1), e0146296. doi:10.1371/journal.pone.0146296 | es_ES |
dc.description.references | Mir-Palomo, S., Nácher, A., Ofelia Vila Busó, M. A., Caddeo, C., Manca, M. L., Manconi, M., & Díez-Sales, O. (2019). Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids and Surfaces B: Biointerfaces, 175, 654-662. doi:10.1016/j.colsurfb.2018.12.055 | es_ES |
dc.description.references | Owczarek, K., & Jaworski, M. (2016). Quality of life and severity of skin changes in the dynamics of psoriasis. Advances in Dermatology and Allergology, 2, 102-108. doi:10.5114/pdia.2015.54873 | es_ES |
dc.description.references | Perez, A. P., Altube, M. J., Schilrreff, P., Apezteguia, G., Celes, F. S., Zacchino, S., … Morilla, M. J. (2016). Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids and Surfaces B: Biointerfaces, 139, 190-198. doi:10.1016/j.colsurfb.2015.12.003 | es_ES |
dc.description.references | Pimentel-Moral, S., Teixeira, M. C., Fernandes, A. R., Arráez-Román, D., Martínez-Férez, A., Segura-Carretero, A., & Souto, E. B. (2018). Lipid nanocarriers for the loading of polyphenols – A comprehensive review. Advances in Colloid and Interface Science, 260, 85-94. doi:10.1016/j.cis.2018.08.007 | es_ES |
dc.description.references | Pivetta, T. P., Simões, S., Araújo, M. M., Carvalho, T., Arruda, C., & Marcato, P. D. (2018). Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids and Surfaces B: Biointerfaces, 164, 281-290. doi:10.1016/j.colsurfb.2018.01.053 | es_ES |
dc.description.references | Pleguezuelos-Villa, M., Nácher, A., Hernández, M. J., Ofelia Vila Buso, M. A., Ruiz Sauri, A., & Díez-Sales, O. (2019). Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration. International Journal of Pharmaceutics, 564, 299-307. doi:10.1016/j.ijpharm.2019.04.056 | es_ES |
dc.description.references | Rauf, A., Imran, M., Khan, I. A., ur-Rehman, M.-, Gilani, S. A., Mehmood, Z., & Mubarak, M. S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research, 32(11), 2109-2130. doi:10.1002/ptr.6155 | es_ES |
dc.description.references | Ring, J., Alomar, A., Bieber, T., Deleuran, M., Fink-Wagner, A., Gelmetti, C., … Darsow, U. (2012). Guidelines for treatment of atopic eczema (atopic dermatitis) Part I. Journal of the European Academy of Dermatology and Venereology, 26(8), 1045-1060. doi:10.1111/j.1468-3083.2012.04635.x | es_ES |
dc.description.references | Rodríguez-Luna, A., Talero, E., Terencio, M., González-Rodríguez, M., Rabasco, A., de los Reyes, C., … Ávila-Román, J. (2017). Topical Application of Glycolipids from Isochrysis galbana Prevents Epidermal Hyperplasia in Mice. Marine Drugs, 16(1), 2. doi:10.3390/md16010002 | es_ES |
dc.description.references | Szandruk, M., Merwid-Ląd, A., & Szeląg, A. (2017). The impact of mangiferin from Belamcanda chinensis on experimental colitis in rats. Inflammopharmacology, 26(2), 571-581. doi:10.1007/s10787-017-0337-0 | es_ES |
dc.description.references | Tanaka, M., Kishimoto, Y., Sasaki, M., Sato, A., Kamiya, T., Kondo, K., & Iida, K. (2018). Terminalia bellirica (Gaertn.) Roxb. Extract and Gallic Acid Attenuate LPS-Induced Inflammation and Oxidative Stress via MAPK/NF-κB and Akt/AMPK/Nrf2 Pathways. Oxidative Medicine and Cellular Longevity, 2018, 1-15. doi:10.1155/2018/9364364 | es_ES |
dc.description.references | Zengin, G., Stefanucci, A., Rodrigues, M. J., Mollica, A., Custodio, L., Aumeeruddy, M. Z., & Mahomoodally, M. F. (2019). Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of Pharmaceutical and Biomedical Analysis, 162, 225-233. doi:10.1016/j.jpba.2018.09.035 | es_ES |
dc.description.references | Zou, B., Wang, H., Liu, Y., Qi, P., Lei, T., Sun, M., & Wang, Y. (2017). Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3. Oncology Reports, 38(3), 1431-1441. doi:10.3892/or.2017.5814 | es_ES |