Heywood JB. Internal Combustion Engine Fundamentals. vol. 21. 1988.
Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 88(4), 1068-1074. doi:10.1016/j.apenergy.2010.10.012
Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 88(4), 1130-1139. doi:10.1016/j.apenergy.2010.10.004
[+]
Heywood JB. Internal Combustion Engine Fundamentals. vol. 21. 1988.
Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 88(4), 1068-1074. doi:10.1016/j.apenergy.2010.10.012
Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 88(4), 1130-1139. doi:10.1016/j.apenergy.2010.10.004
Gavaises, M. (2008). Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions. International Journal of Engine Research, 9(6), 435-447. doi:10.1243/14680874jer01708
Som, S., Ramirez, A. I., Longman, D. E., & Aggarwal, S. K. (2011). Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel, 90(3), 1267-1276. doi:10.1016/j.fuel.2010.10.048
Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035
Nguyen, D., Duke, D., Kastengren, A., Matusik, K., Swantek, A., Powell, C. F., & Honnery, D. (2017). Spray flow structure from twin-hole diesel injector nozzles. Experimental Thermal and Fluid Science, 86, 235-247. doi:10.1016/j.expthermflusci.2017.04.020
Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220
Lee, C. S., Lee, K. H., Reitz, R. D., & Park, S. W. (2006). EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM. Atomization and Sprays, 16(5), 543-562. doi:10.1615/atomizspr.v16.i5.50
Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035
Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020
Bianchi GM, Falfari S, Pelloni P, Kong S-C, Reitz RD. Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics. SAE Tech Pap 2002-01-0213 2002. doi:10.4271/2002-01-0213.
Marcer R, Audiffren C, Viel A, Bouvier B, Walbott A, Argueyrolles B. Coupling 1D System AMESim and 3D CFD EOLE models for Diesel Injection Simulation Renault. ILASS - Eur. 2010, 23rd Annu. Conf. Liq. At. Spray Syst., 2010, p. 1–10.
Plamondon, E., & Seers, P. (2014). Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends. Applied Energy, 131, 411-424. doi:10.1016/j.apenergy.2014.06.039
Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management, 54(1), 122-132. doi:10.1016/j.enconman.2011.10.007
Salvador, F. J., Plazas, A. H., Gimeno, J., & Carreres, M. (2012). Complete modelling of a piezo actuator last-generation injector for diesel injection systems. International Journal of Engine Research, 15(1), 3-19. doi:10.1177/1468087412455373
Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043
Wang, X., Huang, Z., Kuti, O. A., Zhang, W., & Nishida, K. (2010). Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. International Journal of Heat and Fluid Flow, 31(4), 659-666. doi:10.1016/j.ijheatfluidflow.2010.03.006
Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., & Gavaises, M. (2014). Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123, 143-150. doi:10.1016/j.fuel.2014.01.050
Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., & Bergeles, G. (2015). Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51, 257-267. doi:10.1016/j.ijheatfluidflow.2014.10.010
Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102
Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951
Dernotte, J., Hespel, C., Foucher, F., Houillé, S., & Mounaïm-Rousselle, C. (2012). Influence of physical fuel properties on the injection rate in a Diesel injector. Fuel, 96, 153-160. doi:10.1016/j.fuel.2011.11.073
Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J., & Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1-7. doi:10.1016/j.fuel.2015.09.008
Seykens X, Somers LMT, Baert RSG. Modelling of common rail fuel injection system and influence of fluid properties on process. Proc. VAFSEP, Dublin, Ireland; July 6-9, 2004, p. 6–9.
Catania, A. E., Ferrari, A., & Spessa, E. (2008). Temperature variations in the simulation of high-pressure injection-system transient flows under cavitation. International Journal of Heat and Mass Transfer, 51(7-8), 2090-2107. doi:10.1016/j.ijheatmasstransfer.2007.11.032
Yu, H., Goldsworthy, L., Brandner, P. A., Li, J., & Garaniya, V. (2018). Modelling thermal effects in cavitating high-pressure diesel sprays using an improved compressible multiphase approach. Fuel, 222, 125-145. doi:10.1016/j.fuel.2018.02.104
Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2017). Experimental assessment of the fuel heating and the validity of the assumption of adiabatic flow through the internal orifices of a diesel injector. Fuel, 188, 442-451. doi:10.1016/j.fuel.2016.10.061
Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2018). Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions. Experimental Techniques, 42(5), 467-472. doi:10.1007/s40799-018-0246-1
Desantes, J. M., López, J. J., Carreres, M., & López-Pintor, D. (2016). Characterization and prediction of the discharge coefficient of non-cavitating diesel injection nozzles. Fuel, 184, 371-381. doi:10.1016/j.fuel.2016.07.026
Leonhard, R., Warga, J., Pauer, T., Rückle, M., & Schnell, M. (2010). Solenoid common-rail injector for 1800 bar. MTZ worldwide, 71(2), 10-15. doi:10.1007/bf03227003
PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009
Siebers DL. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization. SAE Tech Pap 1999-01-0528 1999. doi:10.4271/1999-01-0528.
Desantes, J. M., Salvador, F. J., Carreres, M., & Martínez-López, J. (2014). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4), 407-423. doi:10.1177/0954407014542627
Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042
Chorążewski, M., Dergal, F., Sawaya, T., Mokbel, I., Grolier, J.-P. E., & Jose, J. (2013). Thermophysical properties of Normafluid (ISO 4113) over wide pressure and temperature ranges. Fuel, 105, 440-450. doi:10.1016/j.fuel.2012.05.059
Huang, D., Simon, S. L., & McKenna, G. B. (2005). Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers. The Journal of Chemical Physics, 122(8), 084907. doi:10.1063/1.1852453
Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508. doi:10.1021/ie4033999
Růžička, V., & Domalski, E. S. (1993). Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. I. Hydrocarbon Compounds. Journal of Physical and Chemical Reference Data, 22(3), 597-618. doi:10.1063/1.555923
Zábranský, M., Kolská, Z., Růžička, V., & Domalski, E. S. (2010). Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. Journal of Physical and Chemical Reference Data, 39(1), 013103. doi:10.1063/1.3182831
Winklhofer, E., Ahmadi-Befrui, B., Wiesler, B., & Cresnoverh, G. (1992). The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(3), 173-183. doi:10.1243/pime_proc_1992_206_176_02
Nishimura T, Satoh K, Takahashi S, Yokota K. Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine. SAE Tech. Pap. 981929, 1998. doi:10.4271/981929.
Benajes, J., Molina, S., De Rudder, K., & Rente, T. (2006). Influence of injection rate shaping on combustion and emissions for a medium duty diesel engine. Journal of Mechanical Science and Technology, 20(9), 1436-1448. doi:10.1007/bf02915967
He, Z., Xuan, T., Xue, Y., Wang, Q., & Zhang, L. (2014). A numerical study of the effects of injection rate shape on combustion and emission of diesel engines. Thermal Science, 18(1), 67-78. doi:10.2298/tsci130810013h
Payri, F., Payri, R., Bardi, M., & Carreres, M. (2014). Engine combustion network: Influence of the gas properties on the spray penetration and spreading angle. Experimental Thermal and Fluid Science, 53, 236-243. doi:10.1016/j.expthermflusci.2013.12.014
Sieder, E. N., & Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial & Engineering Chemistry, 28(12), 1429-1435. doi:10.1021/ie50324a027
Salvador, F. J., Carreres, M., Crialesi-Esposito, M., & Plazas, A. H. (2017). Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1762-1781. doi:10.1177/0954407017735262
Matsumoto S, Yamada K, Date K. Concepts and Evolution of Injector for Common Rail System. SAE Tech Pap 2012-01-1753 2012. doi:10.4271/2012-01-1753.
Schöppe, D., Zülch, S., Hardy, M., Geurts, D., Jorach, R. W., & Baker, N. (2008). Delphi Common Rail system with direct acting injector. MTZ worldwide, 69(10), 32-38. doi:10.1007/bf03226918
Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082
Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040
Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837
Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531
ECN. Engine Combustion Network. Https://EcnSandiaGov/Diesel-Spray-Combustion/ 2010. www.sandia.gov/ecn/.
[-]