- -

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis

Show full item record

Salvador, FJ.; Gimeno, J.; Martín, J.; Carreres, M. (2020). Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis. Fuel. 260:1-13. https://doi.org/10.1016/j.fuel.2019.116348

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168336

Files in this item

Item Metadata

Title: Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis
Author: Salvador, Francisco Javier Gimeno, Jaime Martín, Jaime Carreres, Marcos
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] The fuel flow along common-rail injectors is usually treated as isothermal, although the expansions across the injector orifices lead to variations in the fuel temperature that in turn modify the fuel properties ...[+]
Subjects: Diesel , Injection , Computational , 1D modelling , Fuel temperature , Adiabatic flow
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Fuel. (issn: 0016-2361 )
DOI: 10.1016/j.fuel.2019.116348
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.fuel.2019.116348
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/
Thanks:
This work was partly sponsored by FEDER and the Spanish "Ministerio de Economia y Competitividad" in the frame of the project "Desarrollo de modelos de combustion y emisiones HPC para el analisis de plantas propulsivas de ...[+]
Type: Artículo

References

Heywood JB. Internal Combustion Engine Fundamentals. vol. 21. 1988.

Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 88(4), 1068-1074. doi:10.1016/j.apenergy.2010.10.012

Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 88(4), 1130-1139. doi:10.1016/j.apenergy.2010.10.004 [+]
Heywood JB. Internal Combustion Engine Fundamentals. vol. 21. 1988.

Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 88(4), 1068-1074. doi:10.1016/j.apenergy.2010.10.012

Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 88(4), 1130-1139. doi:10.1016/j.apenergy.2010.10.004

Gavaises, M. (2008). Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions. International Journal of Engine Research, 9(6), 435-447. doi:10.1243/14680874jer01708

Som, S., Ramirez, A. I., Longman, D. E., & Aggarwal, S. K. (2011). Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel, 90(3), 1267-1276. doi:10.1016/j.fuel.2010.10.048

Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035

Nguyen, D., Duke, D., Kastengren, A., Matusik, K., Swantek, A., Powell, C. F., & Honnery, D. (2017). Spray flow structure from twin-hole diesel injector nozzles. Experimental Thermal and Fluid Science, 86, 235-247. doi:10.1016/j.expthermflusci.2017.04.020

Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220

Lee, C. S., Lee, K. H., Reitz, R. D., & Park, S. W. (2006). EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM. Atomization and Sprays, 16(5), 543-562. doi:10.1615/atomizspr.v16.i5.50

Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035

Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020

Bianchi GM, Falfari S, Pelloni P, Kong S-C, Reitz RD. Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics. SAE Tech Pap 2002-01-0213 2002. doi:10.4271/2002-01-0213.

Marcer R, Audiffren C, Viel A, Bouvier B, Walbott A, Argueyrolles B. Coupling 1D System AMESim and 3D CFD EOLE models for Diesel Injection Simulation Renault. ILASS - Eur. 2010, 23rd Annu. Conf. Liq. At. Spray Syst., 2010, p. 1–10.

Plamondon, E., & Seers, P. (2014). Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends. Applied Energy, 131, 411-424. doi:10.1016/j.apenergy.2014.06.039

Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management, 54(1), 122-132. doi:10.1016/j.enconman.2011.10.007

Salvador, F. J., Plazas, A. H., Gimeno, J., & Carreres, M. (2012). Complete modelling of a piezo actuator last-generation injector for diesel injection systems. International Journal of Engine Research, 15(1), 3-19. doi:10.1177/1468087412455373

Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043

Wang, X., Huang, Z., Kuti, O. A., Zhang, W., & Nishida, K. (2010). Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. International Journal of Heat and Fluid Flow, 31(4), 659-666. doi:10.1016/j.ijheatfluidflow.2010.03.006

Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., & Gavaises, M. (2014). Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123, 143-150. doi:10.1016/j.fuel.2014.01.050

Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., & Bergeles, G. (2015). Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51, 257-267. doi:10.1016/j.ijheatfluidflow.2014.10.010

Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102

Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951

Dernotte, J., Hespel, C., Foucher, F., Houillé, S., & Mounaïm-Rousselle, C. (2012). Influence of physical fuel properties on the injection rate in a Diesel injector. Fuel, 96, 153-160. doi:10.1016/j.fuel.2011.11.073

Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J., & Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1-7. doi:10.1016/j.fuel.2015.09.008

Seykens X, Somers LMT, Baert RSG. Modelling of common rail fuel injection system and influence of fluid properties on process. Proc. VAFSEP, Dublin, Ireland; July 6-9, 2004, p. 6–9.

Catania, A. E., Ferrari, A., & Spessa, E. (2008). Temperature variations in the simulation of high-pressure injection-system transient flows under cavitation. International Journal of Heat and Mass Transfer, 51(7-8), 2090-2107. doi:10.1016/j.ijheatmasstransfer.2007.11.032

Yu, H., Goldsworthy, L., Brandner, P. A., Li, J., & Garaniya, V. (2018). Modelling thermal effects in cavitating high-pressure diesel sprays using an improved compressible multiphase approach. Fuel, 222, 125-145. doi:10.1016/j.fuel.2018.02.104

Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2017). Experimental assessment of the fuel heating and the validity of the assumption of adiabatic flow through the internal orifices of a diesel injector. Fuel, 188, 442-451. doi:10.1016/j.fuel.2016.10.061

Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2018). Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions. Experimental Techniques, 42(5), 467-472. doi:10.1007/s40799-018-0246-1

Desantes, J. M., López, J. J., Carreres, M., & López-Pintor, D. (2016). Characterization and prediction of the discharge coefficient of non-cavitating diesel injection nozzles. Fuel, 184, 371-381. doi:10.1016/j.fuel.2016.07.026

Leonhard, R., Warga, J., Pauer, T., Rückle, M., & Schnell, M. (2010). Solenoid common-rail injector for 1800 bar. MTZ worldwide, 71(2), 10-15. doi:10.1007/bf03227003

PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009

Siebers DL. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization. SAE Tech Pap 1999-01-0528 1999. doi:10.4271/1999-01-0528.

Desantes, J. M., Salvador, F. J., Carreres, M., & Martínez-López, J. (2014). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4), 407-423. doi:10.1177/0954407014542627

Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042

Chorążewski, M., Dergal, F., Sawaya, T., Mokbel, I., Grolier, J.-P. E., & Jose, J. (2013). Thermophysical properties of Normafluid (ISO 4113) over wide pressure and temperature ranges. Fuel, 105, 440-450. doi:10.1016/j.fuel.2012.05.059

Huang, D., Simon, S. L., & McKenna, G. B. (2005). Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers. The Journal of Chemical Physics, 122(8), 084907. doi:10.1063/1.1852453

Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508. doi:10.1021/ie4033999

Růžička, V., & Domalski, E. S. (1993). Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. I. Hydrocarbon Compounds. Journal of Physical and Chemical Reference Data, 22(3), 597-618. doi:10.1063/1.555923

Zábranský, M., Kolská, Z., Růžička, V., & Domalski, E. S. (2010). Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. Journal of Physical and Chemical Reference Data, 39(1), 013103. doi:10.1063/1.3182831

Winklhofer, E., Ahmadi-Befrui, B., Wiesler, B., & Cresnoverh, G. (1992). The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(3), 173-183. doi:10.1243/pime_proc_1992_206_176_02

Nishimura T, Satoh K, Takahashi S, Yokota K. Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine. SAE Tech. Pap. 981929, 1998. doi:10.4271/981929.

Benajes, J., Molina, S., De Rudder, K., & Rente, T. (2006). Influence of injection rate shaping on combustion and emissions for a medium duty diesel engine. Journal of Mechanical Science and Technology, 20(9), 1436-1448. doi:10.1007/bf02915967

He, Z., Xuan, T., Xue, Y., Wang, Q., & Zhang, L. (2014). A numerical study of the effects of injection rate shape on combustion and emission of diesel engines. Thermal Science, 18(1), 67-78. doi:10.2298/tsci130810013h

Payri, F., Payri, R., Bardi, M., & Carreres, M. (2014). Engine combustion network: Influence of the gas properties on the spray penetration and spreading angle. Experimental Thermal and Fluid Science, 53, 236-243. doi:10.1016/j.expthermflusci.2013.12.014

Sieder, E. N., & Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial & Engineering Chemistry, 28(12), 1429-1435. doi:10.1021/ie50324a027

Salvador, F. J., Carreres, M., Crialesi-Esposito, M., & Plazas, A. H. (2017). Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1762-1781. doi:10.1177/0954407017735262

Matsumoto S, Yamada K, Date K. Concepts and Evolution of Injector for Common Rail System. SAE Tech Pap 2012-01-1753 2012. doi:10.4271/2012-01-1753.

Schöppe, D., Zülch, S., Hardy, M., Geurts, D., Jorach, R. W., & Baker, N. (2008). Delphi Common Rail system with direct acting injector. MTZ worldwide, 69(10), 32-38. doi:10.1007/bf03226918

Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082

Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040

Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837

Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531

ECN. Engine Combustion Network. Https://EcnSandiaGov/Diesel-Spray-Combustion/ 2010. www.sandia.gov/ecn/.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record