- -

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Carreres, Marcos es_ES
dc.contributor.author Belmar-Gil, Mario es_ES
dc.date.accessioned 2021-06-29T03:31:11Z
dc.date.available 2021-06-29T03:31:11Z
dc.date.issued 2020-01-15 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168477
dc.description.abstract [EN] In this paper, a one-dimensional computational model of the flow in a common-rail injector is used to compute local variations of fuel temperature (including the temperature change produced upon expansion across the nozzle) and analyse their effect on injector dynamics. These variations are accounted through the adiabatic flow hypothesis, assessed in a first part of the paper where the model features are also described. They imply variations in the fuel properties and the flow regime established across the injector internal restrictions driving the solenoid valve. An extensive validation of the model against experimental results is presented for a wide range of conditions. Multiple injection strategies are also explored, analysing the influence of the inlet fuel temperature and its variations on the mass injected by successive injections and the critical dwell time below which they cannot be separated. Results show significant changes in fuel temperature across some injector restrictions. These changes are greater the higher the rail pressure and lower the fuel temperature at the injector inlet. In the case of the flow across nozzle orifices, the fuel can be either heated or subcooled depending on the operating conditions, the heating being especially relevant for cold-start-like fuel temperatures at the inlet. Thermal effects also influence the injection rate and duration. This influence on injector dynamics is particularly accused in the injector of study due to its ballistic nature. In this regard, the time needed to effectively separate two successive injections is greater the higher the fuel temperature and the injection pressure. es_ES
dc.description.sponsorship This work was partly sponsored by FEDER and the Spanish "Ministerio de Economia y Competitividad" in the frame of the project "Desarrollo de modelos de combustion y emisiones HPC para el analisis de plantas propulsivas de transporte sostenible (CHEST)", reference TRA2017-89139-C2-1-R-AR. On the other hand, the support given to Mr Mario Belmar by "Universitat Politecnica de Valencia" through the "FPI-Subprograma 2" grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)" is gratefully acknowledged by the authors. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel es_ES
dc.subject Injection es_ES
dc.subject Computational es_ES
dc.subject 1D modelling es_ES
dc.subject Fuel temperature es_ES
dc.subject Adiabatic flow es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2019.115663 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Salvador, FJ.; Carreres, M.; Belmar-Gil, M. (2020). Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion. Fuel. 260:1-17. https://doi.org/10.1016/j.fuel.2019.115663 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2019.115663 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 260 es_ES
dc.relation.pasarela S\395867 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020 es_ES
dc.description.references Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. I., Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302-314. doi:10.1016/j.enconman.2014.12.004 es_ES
dc.description.references Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1-3. doi:10.1016/j.enpol.2009.06.068 es_ES
dc.description.references Wang, J., Feng, L., Tang, X., Bentley, Y., & Höök, M. (2017). The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures, 86, 58-72. doi:10.1016/j.futures.2016.04.007 es_ES
dc.description.references Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035 es_ES
dc.description.references Boccardo, G., Millo, F., Piano, A., Arnone, L., Manelli, S., Fagg, S., … Weber, J. (2019). Experimental investigation on a 3000 bar fuel injection system for a SCR-free non-road diesel engine. Fuel, 243, 342-351. doi:10.1016/j.fuel.2019.01.122 es_ES
dc.description.references Mancaruso, E., Sequino, L., & Vaglieco, B. M. (2016). Analysis of the pilot injection running Common Rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel, 178, 188-201. doi:10.1016/j.fuel.2016.03.066 es_ES
dc.description.references Breda, S., D’Orrico, F., Berni, F., d’ Adamo, A., Fontanesi, S., Irimescu, A., & Merola, S. S. (2019). Experimental and numerical study on the adoption of split injection strategies to improve air-butanol mixture formation in a DISI optical engine. Fuel, 243, 104-124. doi:10.1016/j.fuel.2019.01.111 es_ES
dc.description.references Wang, B., Pamminger, M., Vojtech, R., & Wallner, T. (2018). Impact of injection strategies on combustion characteristics, efficiency and emissions of gasoline compression ignition operation in a heavy-duty multi-cylinder engine. International Journal of Engine Research, 21(8), 1426-1440. doi:10.1177/1468087418801660 es_ES
dc.description.references Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., & Gao, G.-X. (2015). Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management, 89, 843-861. doi:10.1016/j.enconman.2014.10.047 es_ES
dc.description.references Torelli, R., Som, S., Pei, Y., Zhang, Y., & Traver, M. (2017). Influence of fuel properties on internal nozzle flow development in a multi-hole diesel injector. Fuel, 204, 171-184. doi:10.1016/j.fuel.2017.04.123 es_ES
dc.description.references Salvador, F., De la Morena, J., Crialesi-Esposito, M., & Martínez-López, J. (2017). Comparative study of the internal flow in diesel injection nozzles at cavitating conditions at different needle lifts with steady and transient simulations approaches. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(8), 1060-1078. doi:10.1177/0954407017725672 es_ES
dc.description.references Ihme, M., Ma, P. C., & Bravo, L. (2018). Large eddy simulations of diesel-fuel injection and auto-ignition at transcritical conditions. International Journal of Engine Research, 20(1), 58-68. doi:10.1177/1468087418819546 es_ES
dc.description.references Desantes, J. M., Salvador, F. J., Carreres, M., & Martínez-López, J. (2014). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4), 407-423. doi:10.1177/0954407014542627 es_ES
dc.description.references Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043 es_ES
dc.description.references Salvador, F. J., Carreres, M., Crialesi-Esposito, M., & Plazas, A. H. (2017). Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1762-1781. doi:10.1177/0954407017735262 es_ES
dc.description.references Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951 es_ES
dc.description.references Dernotte, J., Hespel, C., Houille, S., Foucher, F., & Mounaim-Rousselle, C. (2012). INFLUENCE OF FUEL PROPERTIES ON THE DIESEL INJECTION PROCESS IN NONVAPORIZING CONDITIONS. Atomization and Sprays, 22(6), 461-492. doi:10.1615/atomizspr.2012004401 es_ES
dc.description.references Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J., & Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1-7. doi:10.1016/j.fuel.2015.09.008 es_ES
dc.description.references Wang, Z., Ding, H., Wyszynski, M. L., Tian, J., & Xu, H. (2015). Experimental study on diesel fuel injection characteristics under cold start conditions with single and split injection strategies. Fuel Processing Technology, 131, 213-222. doi:10.1016/j.fuproc.2014.10.003 es_ES
dc.description.references Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2017). Experimental assessment of the fuel heating and the validity of the assumption of adiabatic flow through the internal orifices of a diesel injector. Fuel, 188, 442-451. doi:10.1016/j.fuel.2016.10.061 es_ES
dc.description.references Nurick, W. H. (1976). Orifice Cavitation and Its Effect on Spray Mixing. Journal of Fluids Engineering, 98(4), 681-687. doi:10.1115/1.3448452 es_ES
dc.description.references Soteriou C, Andrews R, Smith M. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization. SAE Pap 950080 1995. doi: 10.4271/950080. es_ES
dc.description.references Lichtarowicz, A., Duggins, R. K., & Markland, E. (1965). Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices. Journal of Mechanical Engineering Science, 7(2), 210-219. doi:10.1243/jmes_jour_1965_007_029_02 es_ES
dc.description.references Franc J-P. The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation. Fluid Dyn. Cavitation Cavitating Turbopumps, vol. 496, Vienna: Springer; 2007, p. 1–41. doi: 10.1007/978-3-211-76669-9_1. es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES
dc.description.references Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., & Gavaises, M. (2014). Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123, 143-150. doi:10.1016/j.fuel.2014.01.050 es_ES
dc.description.references Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., & Bergeles, G. (2015). Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51, 257-267. doi:10.1016/j.ijheatfluidflow.2014.10.010 es_ES
dc.description.references Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). Effect of fuel properties on diesel spray development in extreme cold conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(9), 1743-1753. doi:10.1243/09544070jauto844 es_ES
dc.description.references Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management, 54(1), 122-132. doi:10.1016/j.enconman.2011.10.007 es_ES
dc.description.references Moon, S., Gao, Y., Park, S., Wang, J., Kurimoto, N., & Nishijima, Y. (2015). Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection. Fuel, 150, 112-122. doi:10.1016/j.fuel.2015.01.097 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem