- -

Scaling spray penetration at supersonic conditions through shockwave analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Scaling spray penetration at supersonic conditions through shockwave analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Taghavifar, Hadi es_ES
dc.contributor.author Nemati, Arash es_ES
dc.date.accessioned 2021-06-29T03:31:28Z
dc.date.available 2021-06-29T03:31:28Z
dc.date.issued 2020-01-15 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168484
dc.description.abstract [EN] In the current paper, an investigation of the supersonic flow effect on shockwave generation and diesel spray penetration scaling has been performed. For this purpose, spray visualization tests have been carried out in a constant-pressure chamber at room temperature using shadowgraphy technique. Two working gases have been used: nitrogen, with similar thermodynamic characteristics to the engine environment, and sulfur hexafluoride, aimed at producing supersonic conditions at moderate injection pressure values. A total of 60 operating points, including different nozzle geometries, injection pressures and chamber densities have been studied. From the visualization study, two different kinds of shockwaves have been detected: normal or frontal, for moderate spray tip Mach (between 1 and 1.5); and oblique, when the Mach is higher than 1.5. The penetration results show that, for the same injection conditions in terms of injection pressure and chamber density, the spray propagation is equal for SF6 and N-2 when the spray is on subsonic conditions, while penetration is higher for SF6 when supersonic velocity is reached. This behavior has been related to the density gradient appearing across the shockwave. A new methodology to extrapolate supersonic penetration from the well-known subsonic penetration law has been proposed, showing good agreement with the experimental results. es_ES
dc.description.sponsorship This work was partly sponsored by "Ministerio de Ciencia, Innovacion y Universidades", of the Spanish Government, in the frame of the Project "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta resolucion", Reference RTI2018-099706-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel spray es_ES
dc.subject Shockwave es_ES
dc.subject Penetration es_ES
dc.subject Visualization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Scaling spray penetration at supersonic conditions through shockwave analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2019.116308 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Salvador, FJ.; De La Morena, J.; Taghavifar, H.; Nemati, A. (2020). Scaling spray penetration at supersonic conditions through shockwave analysis. Fuel. 260:1-7. https://doi.org/10.1016/j.fuel.2019.116308 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2019.116308 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 260 es_ES
dc.relation.pasarela S\397539 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Sazhin, S. S., Feng, G., & Heikal, M. R. (2001). A model for fuel spray penetration. Fuel, 80(15), 2171-2180. doi:10.1016/s0016-2361(01)00098-9 es_ES
dc.description.references Wan, Y., & Peters, N. (1999). SCALING OF SPRAY PENETRATION WITH EVAPORATION. Atomization and Sprays, 9(2), 111-132. doi:10.1615/atomizspr.v9.i2.10 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Novella, R. (2011). Flow regime effects on non-cavitating injection nozzles over spray behavior. International Journal of Heat and Fluid Flow, 32(1), 273-284. doi:10.1016/j.ijheatfluidflow.2010.10.001 es_ES
dc.description.references Sazhin, S., Crua, C., Kennaird, D., & Heikal, M. (2003). The initial stage of fuel spray penetration☆. Fuel, 82(8), 875-885. doi:10.1016/s0016-2361(02)00405-2 es_ES
dc.description.references Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051 es_ES
dc.description.references Choi, W., & Choi, B.-C. (2005). Estimation of the air entrainment characteristics of a transient high-pressure diesel spray. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(8), 1025-1036. doi:10.1243/095440705x34630 es_ES
dc.description.references Kostas, J., Honnery, D., Soria, J., Kastengren, A., Liu, Z., Powell, C. F., & Wang, J. (2009). Effect of nozzle transients and compressibility on the penetration of fuel sprays. Applied Physics Letters, 95(2), 024101. doi:10.1063/1.3182821 es_ES
dc.description.references Hillamo, H., Sarjovaara, T., Kaario, O., Vuorinen, V., & Larmi, M. (2010). DIESEL SPRAY VISUALIZATION AND SHOCKWAVES. Atomization and Sprays, 20(3), 177-189. doi:10.1615/atomizspr.v20.i3.10 es_ES
dc.description.references Jia, T.-M., Li, G.-X., Yu, Y.-S., & Xu, Y.-J. (2016). Propagation characteristics of induced shock waves generated by diesel spray under ultra-high injection pressure. Fuel, 180, 521-528. doi:10.1016/j.fuel.2016.04.009 es_ES
dc.description.references Jia, T.-M., Li, G.-X., Yu, Y.-S., & Xu, Y.-J. (2016). Effects of ultra-high injection pressure on penetration characteristics of diesel spray and a two-mode leading edge shock wave. Experimental Thermal and Fluid Science, 79, 126-133. doi:10.1016/j.expthermflusci.2016.07.006 es_ES
dc.description.references Song, E., Li, Y., Dong, Q., Fan, L., Yao, C., & Yang, L. (2018). Experimental research on the effect of shock wave on the evolution of high-pressure diesel spray. Experimental Thermal and Fluid Science, 93, 235-241. doi:10.1016/j.expthermflusci.2018.01.004 es_ES
dc.description.references Payri, R., Salvador, F. J., De la Morena, J., & Pagano, V. (2018). Experimental investigation of the effect of orifices inclination angle in multihole diesel injector nozzles. Part 2 – Spray characteristics. Fuel, 213, 215-221. doi:10.1016/j.fuel.2017.07.076 es_ES
dc.description.references Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102 es_ES
dc.description.references Payri, R., Salvador, F. J., García, A., & Gil, A. (2012). Combination of Visualization Techniques for the Analysis of Evaporating Diesel Sprays. Energy & Fuels, 26(9), 5481-5490. doi:10.1021/ef3008823 es_ES
dc.description.references Payri, R., Gimeno, J., De la Morena, J., Battiston, P. A., Wadhwa, A., & Straub, R. (2016). Study of new prototype pintle injectors for diesel engine application. Energy Conversion and Management, 122, 419-427. doi:10.1016/j.enconman.2016.06.003 es_ES
dc.description.references Payri, R., Gimeno, J., Viera, J. P., & Plazas, A. H. (2013). Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel, 113, 257-265. doi:10.1016/j.fuel.2013.05.057 es_ES
dc.description.references Dhar, A., Tauzia, X., & Maiboom, A. (2016). Phenomenological models for prediction of spray penetration and mixture properties for different injection profiles. Fuel, 171, 136-142. doi:10.1016/j.fuel.2015.12.022 es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 es_ES
dc.description.references Bermúdez, V., Payri, R., Salvador, F. J., & Plazas, A. H. (2005). Study of the influence of nozzle seat type on injection rate and spray behaviour. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(5), 677-689. doi:10.1243/095440705x28303 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem