- -

Assessment of Sustainability Using a Synthetic Index

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of Sustainability Using a Synthetic Index

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Selva, María Luisa es_ES
dc.contributor.author Puertas Medina, Rosa María es_ES
dc.date.accessioned 2021-06-29T03:31:38Z
dc.date.available 2021-06-29T03:31:38Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0195-9255 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168488
dc.description.abstract [EN] The Sustainable Society Index measures the three fundamental pillars of sustainability (the economy, the environment, and development) for154 countries around the world. It assigns the same weighting to all the indicators, without any aggregation of the pillars. This study proposes the use of cross-efficiency in order to overcome these shortcomings and obtain a more accurate sustainability index that allows countries to be ranked in terms of their environmental situation as well as their economic and social development. First, cluster analysis is used to classify the countries into homogeneous groups, according to their environmental position. Then, two sustainability indices are produced to measure environmental as well as economic and social aspects. The results show that few countries have managed to improve all facets of sustainability, and at times economic development is associated with both social progress and environmental deterioration, which diminishes the end result. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Impact Assessment Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sustainable society index es_ES
dc.subject Cross-efficiency es_ES
dc.subject Cluster analysis es_ES
dc.subject Synthetic indices es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title Assessment of Sustainability Using a Synthetic Index es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eiar.2020.106375 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Martí Selva, ML.; Puertas Medina, RM. (2020). Assessment of Sustainability Using a Synthetic Index. Environmental Impact Assessment Review. 84:1-12. https://doi.org/10.1016/j.eiar.2020.106375 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eiar.2020.106375 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.relation.pasarela S\414783 es_ES
dc.description.references Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. Economics of Education Review, 22(1), 89-97. doi:10.1016/s0272-7757(01)00068-1 es_ES
dc.description.references Angulo-Meza, L., & Lins, M. P. E. (2002). Annals of Operations Research, 116(1/4), 225-242. doi:10.1023/a:1021340616758 es_ES
dc.description.references Barron, F. H., & Barrett, B. E. (1996). Decision Quality Using Ranked Attribute Weights. Management Science, 42(11), 1515-1523. doi:10.1287/mnsc.42.11.1515 es_ES
dc.description.references Bluszcz, A. (2016). A Comparative Analysis of Selected Synthetic Indicators of Sustainability. Procedia - Social and Behavioral Sciences, 220, 40-50. doi:10.1016/j.sbspro.2016.05.467 es_ES
dc.description.references Bracke, S., Radetzky, M., Rosebrock, C., & Ulutas, B. (2019). Efficiency and effectivity of high precision grinding manufacturing processes: An approach based on combined DEA and cluster analyses. Procedia CIRP, 79, 292-297. doi:10.1016/j.procir.2019.02.069 es_ES
dc.description.references Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8 es_ES
dc.description.references Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84 es_ES
dc.description.references Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2012). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523-529. doi:10.1016/j.ejor.2011.10.031 es_ES
dc.description.references Gallego-Álvarez, I., Galindo-Villardón, M. P., & Rodríguez-Rosa, M. (2015). Evolution of sustainability indicator worldwide: A study from the economic perspective based on the X-STATICO method. Ecological Indicators, 58, 139-151. doi:10.1016/j.ecolind.2015.05.025 es_ES
dc.description.references Hashimoto, A., & Ishikawa, H. (1993). Using DEA to evaluate the state of society as measured by multiple social indicators. Socio-Economic Planning Sciences, 27(4), 257-268. doi:10.1016/0038-0121(93)90019-f es_ES
dc.description.references Hashimoto, A., & Kodama, M. (1997). Social Indicators Research, 40(3), 359-373. doi:10.1023/a:1006804520184 es_ES
dc.description.references Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16-24. doi:10.1016/j.ejor.2009.05.009 es_ES
dc.description.references Hollingsworth, B. (2008). The measurement of efficiency and productivity of health care delivery. Health Economics, 17(10), 1107-1128. doi:10.1002/hec.1391 es_ES
dc.description.references Jiang, Q., Liu, Z., Liu, W., Li, T., Cong, W., Zhang, H., & Shi, J. (2018). A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance. Journal of Cleaner Production, 187, 625-637. doi:10.1016/j.jclepro.2018.03.255 es_ES
dc.description.references Kaivo-oja, J., Panula-Ontto, J., Vehmas, J., & Luukkanen, J. (2013). Relationships of the dimensions of sustainability as measured by the sustainable society index framework. International Journal of Sustainable Development & World Ecology, 21(1), 39-45. doi:10.1080/13504509.2013.860056 es_ES
dc.description.references King, M. F., Renó, V. F., & Novo, E. M. L. M. (2013). The Concept, Dimensions and Methods of Assessment of Human Well-Being within a Socioecological Context: A Literature Review. Social Indicators Research, 116(3), 681-698. doi:10.1007/s11205-013-0320-0 es_ES
dc.description.references Kuiper, F. K., & Fisher, L. (1975). 391: A Monte Carlo Comparison of Six Clustering Procedures. Biometrics, 31(3), 777. doi:10.2307/2529565 es_ES
dc.description.references Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189-212. doi:10.1016/j.ecolind.2008.05.011 es_ES
dc.description.references Labuschagne, C., Brent, A. C., & van Erck, R. P. G. (2005). Assessing the sustainability performances of industries. Journal of Cleaner Production, 13(4), 373-385. doi:10.1016/j.jclepro.2003.10.007 es_ES
dc.description.references Marques, R. C., da Cruz, N. F., & Pires, J. (2015). Measuring the sustainability of urban water services. Environmental Science & Policy, 54, 142-151. doi:10.1016/j.envsci.2015.07.003 es_ES
dc.description.references Villarreal Marroquín, M. G., Sánchez Peña, M. L., Castro, C. E., Castro, J. M., & Cabrera-Ríos, M. (2008). Use of data envelopment analysis and clustering in multiple criteria optimization. Intelligent Data Analysis, 12(1), 89-101. doi:10.3233/ida-2008-12106 es_ES
dc.description.references Martí, L., Martín, J. C., & Puertas, R. (2017). A Dea-Logistics Performance Index. Journal of Applied Economics, 20(1), 169-192. doi:10.1016/s1514-0326(17)30008-9 es_ES
dc.description.references Martín, J. C., Mendoza, C., & Román, C. (2015). A DEA Travel–Tourism Competitiveness Index. Social Indicators Research, 130(3), 937-957. doi:10.1007/s11205-015-1211-3 es_ES
dc.description.references Meimand, M., Cavana, R. Y., & Laking, R. (2002). Using DEA and survival analysis for measuring performance of branches in New Zealand’s Accident Compensation Corporation. Journal of the Operational Research Society, 53(3), 303-313. doi:10.1057/palgrave.jors.2601291 es_ES
dc.description.references Melkonyan, T., & Safra, Z. (2016). Intrinsic Variability in Group and Individual Decision Making. Management Science, 62(9), 2651-2667. doi:10.1287/mnsc.2015.2255 es_ES
dc.description.references Murias, P., Martinez, F., & De Miguel, C. (2006). An Economic Wellbeing Index for the Spanish Provinces: A Data Envelopment Analysis Approach. Social Indicators Research, 77(3), 395-417. doi:10.1007/s11205-005-2613-4 es_ES
dc.description.references Phillips, J. (2015). A quantitative approach to determine and evaluate the indicated level and nature of global ecological sustainability. Area, 47(2), 197-210. doi:10.1111/area.12174 es_ES
dc.description.references Phillis, Y. A., Kouikoglou, V. S., & Manousiouthakis, V. (2010). A Review of Sustainability Assessment Models as System of Systems. IEEE Systems Journal, 4(1), 15-25. doi:10.1109/jsyst.2009.2039734 es_ES
dc.description.references Puertas, R., & Marti, L. (2019). Sustainability in Universities: DEA-GreenMetric. Sustainability, 11(14), 3766. doi:10.3390/su11143766 es_ES
dc.description.references Samoilenko, S., & Osei-Bryson, K.-M. (2010). Determining sources of relative inefficiency in heterogeneous samples: Methodology using Cluster Analysis, DEA and Neural Networks. European Journal of Operational Research, 206(2), 479-487. doi:10.1016/j.ejor.2010.02.017 es_ES
dc.description.references Scrase, J. I., & Sheate, W. R. (2002). Integration and integrated approaches to assessment: what do they mean for the environment? Journal of Environmental Policy & Planning, 4(4), 275-294. doi:10.1002/jepp.117 es_ES
dc.description.references Shaker, R. R. (2015). The spatial distribution of development in Europe and its underlying sustainability correlations. Applied Geography, 63, 304-314. doi:10.1016/j.apgeog.2015.07.009 es_ES
dc.description.references Shaker, R. R. (2018). A mega-index for the Americas and its underlying sustainable development correlations. Ecological Indicators, 89, 466-479. doi:10.1016/j.ecolind.2018.01.050 es_ES
dc.description.references Sharma, M. J., & Yu, S. J. (2009). Performance based stratification and clustering for benchmarking of container terminals. Expert Systems with Applications, 36(3), 5016-5022. doi:10.1016/j.eswa.2008.06.010 es_ES
dc.description.references Shin, H. W., & Sohn, S. Y. (2004). Multi-attribute scoring method for mobile telecommunication subscribers. Expert Systems with Applications, 26(3), 363-368. doi:10.1016/j.eswa.2003.09.013 es_ES
dc.description.references Van de Kerk, G., & Manuel, A. R. (2008). A comprehensive index for a sustainable society: The SSI — the Sustainable Society Index. Ecological Economics, 66(2-3), 228-242. doi:10.1016/j.ecolecon.2008.01.029 es_ES
dc.description.references Wątróbski, J., Ziemba, E., Karczmarczyk, A., & Jankowski, J. (2018). An Index to Measure the Sustainable Information Society: The Polish Households Case. Sustainability, 10(9), 3223. doi:10.3390/su10093223 es_ES
dc.description.references Wu, S., Fu, Y., Shen, H., & Liu, F. (2018). Using ranked weights and Shannon entropy to modify regional sustainable society index. Sustainable Cities and Society, 41, 443-448. doi:10.1016/j.scs.2018.05.052 es_ES
dc.description.references Zhu, J. (2001). Multidimensional quality-of-life measure with an application to Fortune’s best cities. Socio-Economic Planning Sciences, 35(4), 263-284. doi:10.1016/s0038-0121(01)00009-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem