Mostrar el registro sencillo del ítem
dc.contributor.author | Banguero-Palacios, Edison | es_ES |
dc.contributor.author | Correcher Salvador, Antonio | es_ES |
dc.contributor.author | Pérez-Navarro Gómez, Ángel | es_ES |
dc.contributor.author | García Moreno, Emilio | es_ES |
dc.contributor.author | Aristizabal, Andrés | es_ES |
dc.date.accessioned | 2021-07-01T03:32:17Z | |
dc.date.available | 2021-07-01T03:32:17Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0960-1481 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168596 | |
dc.description.abstract | [EN] This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the operation of the BESS. The principal component analysis model is applied to a parameter set associated to the capacity, internal resistance and open circuit voltage of a battery energy storage system. The parameters are identified from experimental data collected daily. The PCA model retains the first 5 components that collect 80.25% of the total variability. During the test under real operation contidions, PCA diagnosed a degradation of state of health fastest than the comercial battery controller. A change in the charging modes lead to a battery recovery that was also monitored by the proposed algortihm, and control actions are proposed that lead the BESS to work in normal conditions. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the research project "Implementacion de un programa de desarrollo e investigacion de energias renovables en el departamento del Choco, BPIN 2013000100285 (in Spanish)" and the Universidad TecnolOgica del Choco (in Spanish). The authors would like to thank the anonymous reviewers as well as the editor for their valuable comments that have greatly improved the final version of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Renewable Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Diagnosis | es_ES |
dc.subject | Battery energy storage system | es_ES |
dc.subject | Principal component analysis | es_ES |
dc.subject | State of health | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Diagnosis of a battery energy storage system based on principal component analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.renene.2019.08.064 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad Tecnológica del Chocó//BPIN 2013000100285/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica | es_ES |
dc.description.bibliographicCitation | Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro Gómez, Á.; García Moreno, E.; Aristizabal, A. (2020). Diagnosis of a battery energy storage system based on principal component analysis. Renewable Energy. 146:2438-2449. https://doi.org/10.1016/j.renene.2019.08.064 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.renene.2019.08.064 | es_ES |
dc.description.upvformatpinicio | 2438 | es_ES |
dc.description.upvformatpfin | 2449 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 146 | es_ES |
dc.relation.pasarela | S\392513 | es_ES |
dc.contributor.funder | Universidad Tecnológica del Chocó | es_ES |
dc.description.references | Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V. P. C. (2013). Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Energy, 54, 220-230. doi:10.1016/j.energy.2013.03.028 | es_ES |
dc.description.references | Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492-500. doi:10.1016/j.energy.2013.08.029 | es_ES |
dc.description.references | Aksakal, C., & Sisman, A. (2018). On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy. Energies, 11(1), 118. doi:10.3390/en11010118 | es_ES |
dc.description.references | Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030 | es_ES |
dc.description.references | Li, X., Shu, X., Shen, J., Xiao, R., Yan, W., & Chen, Z. (2017). An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 10(5), 691. doi:10.3390/en10050691 | es_ES |
dc.description.references | Ariza Chacón, H., Banguero, E., Correcher, A., Pérez-Navarro, Á., & Morant, F. (2018). Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms. Energies, 11(9), 2361. doi:10.3390/en11092361 | es_ES |
dc.description.references | Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405 | es_ES |
dc.description.references | Guasch, D., & Silvestre, S. (2003). Dynamic battery model for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 11(3), 193-206. doi:10.1002/pip.480 | es_ES |
dc.description.references | Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2016). An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications. Applied Energy, 169, 888-898. doi:10.1016/j.apenergy.2016.02.062 | es_ES |
dc.description.references | Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2017). Monitoring and enhanced dynamic modeling of battery by genetic algorithm using LabVIEW applied in photovoltaic system. Electrical Engineering, 100(2), 1021-1038. doi:10.1007/s00202-017-0567-6 | es_ES |
dc.description.references | Gao, Z., Cecati, C., & Ding, S. X. (2015). A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757-3767. doi:10.1109/tie.2015.2417501 | es_ES |
dc.description.references | Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304 | es_ES |
dc.description.references | Jiang, Q., Yan, X., & Zhao, W. (2013). Fault Detection and Diagnosis in Chemical Processes Using Sensitive Principal Component Analysis. Industrial & Engineering Chemistry Research, 52(4), 1635-1644. doi:10.1021/ie3017016 | es_ES |
dc.description.references | Fan, J., & Wang, Y. (2014). Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis. Information Sciences, 259, 369-379. doi:10.1016/j.ins.2013.06.021 | es_ES |
dc.description.references | Garcia-Alvarez, D., Fuente, M. J., & Sainz, G. I. (2012). Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 22(3), 551-563. doi:10.1016/j.jprocont.2012.01.007 | es_ES |
dc.description.references | Banguero, E., Aristizábal, A. J., & Murillo, W. (2017). A Verification Study for Grid-Connected 20 kW Solar PV System Operating in Chocó, Colombia. Energy Procedia, 141, 96-101. doi:10.1016/j.egypro.2017.11.019 | es_ES |
dc.description.references | Rahman, M. A., Anwar, S., & Izadian, A. (2016). Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. Journal of Power Sources, 307, 86-97. doi:10.1016/j.jpowsour.2015.12.083 | es_ES |
dc.description.references | Yang, X., Chen, L., Xu, X., Wang, W., Xu, Q., Lin, Y., & Zhou, Z. (2017). Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization. Energies, 10(11), 1811. doi:10.3390/en10111811 | es_ES |
dc.description.references | Kai, H., Yong-Fang, G., Zhi-Gang, L., Hsiung-Cheng, L., & Ling-Ling, L. (2018). Development of Accurate Lithium-Ion Battery Model Based on Adaptive Random Disturbance PSO Algorithm. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/3793492 | es_ES |
dc.description.references | Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle Swarm Optimization. AIAA Journal, 41(8), 1583-1589. doi:10.2514/2.2111 | es_ES |
dc.description.references | Layadi, T. M., Champenois, G., Mostefai, M., & Abbes, D. (2015). Lifetime estimation tool of lead–acid batteries for hybrid power sources design. Simulation Modelling Practice and Theory, 54, 36-48. doi:10.1016/j.simpat.2015.03.001 | es_ES |
dc.description.references | Rahmani, M., & Atia, G. K. (2017). Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis. IEEE Transactions on Signal Processing, 65(23), 6260-6275. doi:10.1109/tsp.2017.2749215 | es_ES |
dc.description.references | Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j | es_ES |
dc.description.references | Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83-90. doi:10.1016/j.tifs.2017.12.006 | es_ES |
dc.description.references | Soh, W., Kim, H., & Yum, B.-J. (2015). Application of kernel principal component analysis to multi-characteristic parameter design problems. Annals of Operations Research, 263(1-2), 69-91. doi:10.1007/s10479-015-1889-2 | es_ES |
dc.description.references | Deng, X., Tian, X., Chen, S., & Harris, C. J. (2018). Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 560-572. doi:10.1109/tnnls.2016.2635111 | es_ES |
dc.description.references | De Ketelaere, B., Hubert, M., & Schmitt, E. (2015). Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318-335. doi:10.1080/00224065.2015.11918137 | es_ES |
dc.description.references | Vanhatalo, E., Kulahci, M., & Bergquist, B. (2017). On the structure of dynamic principal component analysis used in statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 167, 1-11. doi:10.1016/j.chemolab.2017.05.016 | es_ES |
dc.description.references | Zhao, C., Wang, F., Gao, F., Lu, N., & Jia, M. (2007). Adaptive Monitoring Method for Batch Processes Based on Phase Dissimilarity Updating with Limited Modeling Data. Industrial & Engineering Chemistry Research, 46(14), 4943-4953. doi:10.1021/ie061320f | es_ES |
dc.description.references | Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 | es_ES |
dc.description.references | Design of Off-Grid Systems with Sunny Island 4.4M/6.0H/8.0H Devices. Version 2.3. SMA. 1-42. http://files.sma.de/dl/1353/Designing-OffGridSystem-PL-en-23.pdf [Accessed on 15.07.2018]. | es_ES |
dc.description.references | Ungurean, L., Cârstoiu, G., Micea, M. V., & Groza, V. (2016). Battery state of health estimation: a structured review of models, methods and commercial devices. International Journal of Energy Research, 41(2), 151-181. doi:10.1002/er.3598 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |