- -

Diagnosis of a battery energy storage system based on principal component analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diagnosis of a battery energy storage system based on principal component analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Banguero-Palacios, Edison es_ES
dc.contributor.author Correcher Salvador, Antonio es_ES
dc.contributor.author Pérez-Navarro Gómez, Ángel es_ES
dc.contributor.author García Moreno, Emilio es_ES
dc.contributor.author Aristizabal, Andrés es_ES
dc.date.accessioned 2021-07-01T03:32:17Z
dc.date.available 2021-07-01T03:32:17Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0960-1481 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168596
dc.description.abstract [EN] This paper proposes the use of principal component analysis (PCA) for the state of health (SOH) diagnosis of a battery energy storage system (BESS) that is operating in a renewable energy laboratory located in Chocó, Colombia. The presented methodology allows the detection of false alarms during the operation of the BESS. The principal component analysis model is applied to a parameter set associated to the capacity, internal resistance and open circuit voltage of a battery energy storage system. The parameters are identified from experimental data collected daily. The PCA model retains the first 5 components that collect 80.25% of the total variability. During the test under real operation contidions, PCA diagnosed a degradation of state of health fastest than the comercial battery controller. A change in the charging modes lead to a battery recovery that was also monitored by the proposed algortihm, and control actions are proposed that lead the BESS to work in normal conditions. es_ES
dc.description.sponsorship The authors would like to acknowledge the research project "Implementacion de un programa de desarrollo e investigacion de energias renovables en el departamento del Choco, BPIN 2013000100285 (in Spanish)" and the Universidad TecnolOgica del Choco (in Spanish). The authors would like to thank the anonymous reviewers as well as the editor for their valuable comments that have greatly improved the final version of the paper. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Renewable Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diagnosis es_ES
dc.subject Battery energy storage system es_ES
dc.subject Principal component analysis es_ES
dc.subject State of health es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Diagnosis of a battery energy storage system based on principal component analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.renene.2019.08.064 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad Tecnológica del Chocó//BPIN 2013000100285/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica es_ES
dc.description.bibliographicCitation Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro Gómez, Á.; García Moreno, E.; Aristizabal, A. (2020). Diagnosis of a battery energy storage system based on principal component analysis. Renewable Energy. 146:2438-2449. https://doi.org/10.1016/j.renene.2019.08.064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.renene.2019.08.064 es_ES
dc.description.upvformatpinicio 2438 es_ES
dc.description.upvformatpfin 2449 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.relation.pasarela S\392513 es_ES
dc.contributor.funder Universidad Tecnológica del Chocó es_ES
dc.description.references Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V. P. C. (2013). Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Energy, 54, 220-230. doi:10.1016/j.energy.2013.03.028 es_ES
dc.description.references Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492-500. doi:10.1016/j.energy.2013.08.029 es_ES
dc.description.references Aksakal, C., & Sisman, A. (2018). On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries Based on Electrochemical Impedance Spectroscopy. Energies, 11(1), 118. doi:10.3390/en11010118 es_ES
dc.description.references Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030 es_ES
dc.description.references Li, X., Shu, X., Shen, J., Xiao, R., Yan, W., & Chen, Z. (2017). An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 10(5), 691. doi:10.3390/en10050691 es_ES
dc.description.references Ariza Chacón, H., Banguero, E., Correcher, A., Pérez-Navarro, Á., & Morant, F. (2018). Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms. Energies, 11(9), 2361. doi:10.3390/en11092361 es_ES
dc.description.references Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405 es_ES
dc.description.references Guasch, D., & Silvestre, S. (2003). Dynamic battery model for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 11(3), 193-206. doi:10.1002/pip.480 es_ES
dc.description.references Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2016). An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications. Applied Energy, 169, 888-898. doi:10.1016/j.apenergy.2016.02.062 es_ES
dc.description.references Blaifi, S., Moulahoum, S., Colak, I., & Merrouche, W. (2017). Monitoring and enhanced dynamic modeling of battery by genetic algorithm using LabVIEW applied in photovoltaic system. Electrical Engineering, 100(2), 1021-1038. doi:10.1007/s00202-017-0567-6 es_ES
dc.description.references Gao, Z., Cecati, C., & Ding, S. X. (2015). A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757-3767. doi:10.1109/tie.2015.2417501 es_ES
dc.description.references Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304 es_ES
dc.description.references Jiang, Q., Yan, X., & Zhao, W. (2013). Fault Detection and Diagnosis in Chemical Processes Using Sensitive Principal Component Analysis. Industrial & Engineering Chemistry Research, 52(4), 1635-1644. doi:10.1021/ie3017016 es_ES
dc.description.references Fan, J., & Wang, Y. (2014). Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis. Information Sciences, 259, 369-379. doi:10.1016/j.ins.2013.06.021 es_ES
dc.description.references Garcia-Alvarez, D., Fuente, M. J., & Sainz, G. I. (2012). Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 22(3), 551-563. doi:10.1016/j.jprocont.2012.01.007 es_ES
dc.description.references Banguero, E., Aristizábal, A. J., & Murillo, W. (2017). A Verification Study for Grid-Connected 20 kW Solar PV System Operating in Chocó, Colombia. Energy Procedia, 141, 96-101. doi:10.1016/j.egypro.2017.11.019 es_ES
dc.description.references Rahman, M. A., Anwar, S., & Izadian, A. (2016). Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. Journal of Power Sources, 307, 86-97. doi:10.1016/j.jpowsour.2015.12.083 es_ES
dc.description.references Yang, X., Chen, L., Xu, X., Wang, W., Xu, Q., Lin, Y., & Zhou, Z. (2017). Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization. Energies, 10(11), 1811. doi:10.3390/en10111811 es_ES
dc.description.references Kai, H., Yong-Fang, G., Zhi-Gang, L., Hsiung-Cheng, L., & Ling-Ling, L. (2018). Development of Accurate Lithium-Ion Battery Model Based on Adaptive Random Disturbance PSO Algorithm. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/3793492 es_ES
dc.description.references Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle Swarm Optimization. AIAA Journal, 41(8), 1583-1589. doi:10.2514/2.2111 es_ES
dc.description.references Layadi, T. M., Champenois, G., Mostefai, M., & Abbes, D. (2015). Lifetime estimation tool of lead–acid batteries for hybrid power sources design. Simulation Modelling Practice and Theory, 54, 36-48. doi:10.1016/j.simpat.2015.03.001 es_ES
dc.description.references Rahmani, M., & Atia, G. K. (2017). Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis. IEEE Transactions on Signal Processing, 65(23), 6260-6275. doi:10.1109/tsp.2017.2749215 es_ES
dc.description.references Bro, R., & Smilde, A. K. (2014). Principal component analysis. Anal. Methods, 6(9), 2812-2831. doi:10.1039/c3ay41907j es_ES
dc.description.references Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83-90. doi:10.1016/j.tifs.2017.12.006 es_ES
dc.description.references Soh, W., Kim, H., & Yum, B.-J. (2015). Application of kernel principal component analysis to multi-characteristic parameter design problems. Annals of Operations Research, 263(1-2), 69-91. doi:10.1007/s10479-015-1889-2 es_ES
dc.description.references Deng, X., Tian, X., Chen, S., & Harris, C. J. (2018). Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 560-572. doi:10.1109/tnnls.2016.2635111 es_ES
dc.description.references De Ketelaere, B., Hubert, M., & Schmitt, E. (2015). Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318-335. doi:10.1080/00224065.2015.11918137 es_ES
dc.description.references Vanhatalo, E., Kulahci, M., & Bergquist, B. (2017). On the structure of dynamic principal component analysis used in statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 167, 1-11. doi:10.1016/j.chemolab.2017.05.016 es_ES
dc.description.references Zhao, C., Wang, F., Gao, F., Lu, N., & Jia, M. (2007). Adaptive Monitoring Method for Batch Processes Based on Phase Dissimilarity Updating with Limited Modeling Data. Industrial & Engineering Chemistry Research, 46(14), 4943-4953. doi:10.1021/ie061320f es_ES
dc.description.references Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 es_ES
dc.description.references Design of Off-Grid Systems with Sunny Island 4.4M/6.0H/8.0H Devices. Version 2.3. SMA. 1-42. http://files.sma.de/dl/1353/Designing-OffGridSystem-PL-en-23.pdf [Accessed on 15.07.2018]. es_ES
dc.description.references Ungurean, L., Cârstoiu, G., Micea, M. V., & Groza, V. (2016). Battery state of health estimation: a structured review of models, methods and commercial devices. International Journal of Energy Research, 41(2), 151-181. doi:10.1002/er.3598 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem