- -

Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning?

Show simple item record

Files in this item

dc.contributor.author González-Sanchis, María es_ES
dc.contributor.author García-Soro, Juan Miguel es_ES
dc.contributor.author Molina, Antonio J. es_ES
dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Bautista, Inmaculada es_ES
dc.contributor.author Rouzic, Elie es_ES
dc.contributor.author Bogena, Heye R. es_ES
dc.contributor.author Hendricks Franssen, Harrie-JanHarrie es_ES
dc.contributor.author Campo García, Antonio Dámaso Del es_ES
dc.date.accessioned 2021-07-01T03:32:29Z
dc.date.available 2021-07-01T03:32:29Z
dc.date.issued 2020-11-17 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168602
dc.description.abstract [EN] Water scarcity in semi-arid regions is expected to increase under climate change, which will significantly affect forest ecosystems by increasing fire risk, diminishing productivity and water provisioning. Eco-hydrological forest management is conceived here as an adequate strategy to buffer climate change effects and increase forest resilience. Under this context, soil moisture is a key variable to quantify the impacts of eco-hydrological forest management on forest-water relations. Cosmic-ray neutron and capacitance probes are two different techniques for measuring soil moisture, which differ greatly in the spatial scale of the measurement support (i.e., few centimeters vs. several hectares). This study compares the capability of both methodologies in assessing soil water dynamics as a key variable that reflects the effects of forest management in a semi-arid environment. To this end, two experimental plots were established in Sierra Calderona in the province of Valencia in Spain in a post-fire regeneration Aleppo pine forest with high tree density. One plot was thinned (T) and the other remained as control (C). Nine capacitance probes and one Cosmic Ray Neutron Probe (CRNP) were installed in each plot. First, the CRNP was calibrated and validated, and subsequently, the performance of both techniques was analyzed by comparing soil moisture and its relationship with environmental variables and stand transpiration. The validation results confirmed the general reliability of CRNP to obtain soil moisture under semi-arid conditions, with a Kling-Gupta efficiency coefficient (KGE) between 0.75 and 0.84, although this performance decreased significantly when dealing with extreme soil moisture (KGE: -0.06-0.02). A significant effect of forest biomass and litter layer was also observed on CRNP-derived soil moisture, which produced an overestimation of soil moisture. The performance of both methodologies was analyzed by partial correlations between soil moisture and environmental variables and transpiration, as well as by applying Boosted Regression Trees to reproduce tree transpiration with each soil moisture measurement technique together with the environmental variables. Both methodologies were capable to reproduce tree transpiration affected by soil moisture, environmental variables and thinning, although CRNP always appeared as the most affected by atmospheric driving forces. es_ES
dc.description.sponsorship This study is a component of the research projects: EHIDROMED (CGL2014-58127-C3) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and FEDER funds, and LIFE17 CCA/ES/000063 RESILIENTFORESTS. AM is beneficiary of an APOSTD fellowship (APOSTD/2019/111) funded by the Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Forest hydrology es_ES
dc.subject Silviculture es_ES
dc.subject Capacitance sensors es_ES
dc.subject Cosmic-ray sensor es_ES
dc.subject Pinus halepensis es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/frwa.2020.552508 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-2-R/ES/INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILIENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE17 CCA%2FES%2F000063/EU/Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/LIFE RESILIENT FORESTS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-1-R/ES/MEJORAS EN LA EVALUACION DE LA RESPUESTA HIDROLOGICA Y SEDIMENTARIA EN CUENCAS MEDITERRANEAS FRENTE AL CAMBIO CLIMATICO Y AMBIENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F111/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation González-Sanchis, M.; García-Soro, JM.; Molina, AJ.; Lidón, A.; Bautista, I.; Rouzic, E.; Bogena, HR.... (2020). Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning?. Frontiers in Water. 2:1-16. https://doi.org/10.3389/frwa.2020.552508 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/frwa.2020.552508 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.identifier.eissn 2624-9375 es_ES
dc.relation.pasarela S\429742 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone Journal, 16(8), vzj2017.04.0086. doi:10.2136/vzj2017.04.0086 es_ES
dc.description.references Baatz, R., Bogena, H. R., Hendricks Franssen, H. ‐J., Huisman, J. A., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030-2046. doi:10.1002/2014wr016443 es_ES
dc.description.references Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Mountain landscapes offer few opportunities for high-elevation tree species migration. Global Change Biology, 20(5), 1441-1451. doi:10.1111/gcb.12504 es_ES
dc.description.references Berdanier, A. B., Miniat, C. F., & Clark, J. S. (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiology, 36(8), 932-941. doi:10.1093/treephys/tpw027 es_ES
dc.description.references Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., & Vereecken, H. (2013). Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791. doi:10.1002/wrcr.20463 es_ES
dc.description.references Bogena, H. R., Huisman, J. A., Güntner, A., Hübner, C., Kusche, J., Jonard, F., … Vereecken, H. (2015). Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: a review. WIREs Water, 2(6), 635-647. doi:10.1002/wat2.1097 es_ES
dc.description.references Brown, P. M., & Wu, R. (2005). CLIMATE AND DISTURBANCE FORCING OF EPISODIC TREE RECRUITMENT IN A SOUTHWESTERN PONDEROSA PINE LANDSCAPE. Ecology, 86(11), 3030-3038. doi:10.1890/05-0034 es_ES
dc.description.references Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598. doi:10.1093/treephys/21.9.589 es_ES
dc.description.references CASTILLO, V., GOMEZPLAZA, A., & MARTINEZMENA, M. (2003). The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology, 284(1-4), 114-130. doi:10.1016/s0022-1694(03)00264-6 es_ES
dc.description.references Chirici, G., Mura, M., McInerney, D., Py, N., Tomppo, E. O., Waser, L. T., … McRoberts, R. E. (2016). A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sensing of Environment, 176, 282-294. doi:10.1016/j.rse.2016.02.001 es_ES
dc.description.references Coops, N. C., Waring, R. H., & Law, B. E. (2005). Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecological Modelling, 183(1), 107-124. doi:10.1016/j.ecolmodel.2004.08.002 es_ES
dc.description.references Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. doi:10.1017/cbo9780511801389 es_ES
dc.description.references Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J., & Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264, 266-282. doi:10.1016/j.agrformet.2018.10.016 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J., & García-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology, 565, 74-86. doi:10.1016/j.jhydrol.2018.08.013 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., Lidón, A., García-Prats, A., Lull, C., Bautista, I., … Francés, F. (2017). Ecohydrological-Based Forest Management in Semi-arid Climate. Ecosystem Services of Headwater Catchments, 45-57. doi:10.1007/978-3-319-57946-7_6 es_ES
dc.description.references Del Campo, A. D., González-Sanchis, M., Molina, A. J., García-Prats, A., Ceacero, C. J., & Bautista, I. (2019). Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. Forest Ecology and Management, 438, 163-175. doi:10.1016/j.foreco.2019.02.020 es_ES
dc.description.references Desilets, D., & Zreda, M. (2003). Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters, 206(1-2), 21-42. doi:10.1016/s0012-821x(02)01088-9 es_ES
dc.description.references Desilets, D., Zreda, M., & Ferré, T. P. A. (2010). Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11). doi:10.1029/2009wr008726 es_ES
dc.description.references Detty, J. M., & McGuire, K. J. (2010). Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resources Research, 46(7). doi:10.1029/2009wr008102 es_ES
dc.description.references Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. doi:10.1111/j.1365-2656.2008.01390.x es_ES
dc.description.references Flinn, K. M., & Marks, P. L. (2007). AGRICULTURAL LEGACIES IN FOREST ENVIRONMENTS: TREE COMMUNITIES, SOIL PROPERTIES, AND LIGHT AVAILABILITY. Ecological Applications, 17(2), 452-463. doi:10.1890/05-1963 es_ES
dc.description.references Franz, T. E., Zreda, M., Rosolem, R., & Ferre, T. P. A. (2012). Field Validation of a Cosmic‐Ray Neutron Sensor Using a Distributed Sensor Network. Vadose Zone Journal, 11(4). doi:10.2136/vzj2012.0046 es_ES
dc.description.references Gardner, C. M. K., Dean, T. J., & Cooper, J. D. (1998). Soil Water Content Measurement with a High-Frequency Capacitance Sensor. Journal of Agricultural Engineering Research, 71(4), 395-403. doi:10.1006/jaer.1998.0338 es_ES
dc.description.references González-Sanchis, M., Ruiz-Pérez, G., Del Campo, A. D., Garcia-Prats, A., Francés, F., & Lull, C. (2019). Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility. Journal of Environmental Management, 231, 653-665. doi:10.1016/j.jenvman.2018.10.078 es_ES
dc.description.references Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 es_ES
dc.description.references Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043. doi:10.1002/2013wr015138 es_ES
dc.description.references Hawley, M. E., Jackson, T. J., & McCuen, R. H. (1983). Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology, 62(1-4), 179-200. doi:10.1016/0022-1694(83)90102-6 es_ES
dc.description.references Heidbüchel, I., Güntner, A., & Blume, T. (2016). Use of cosmic-ray neutron sensors for soil moisture monitoring in forests. Hydrology and Earth System Sciences, 20(3), 1269-1288. doi:10.5194/hess-20-1269-2016 es_ES
dc.description.references Jakobi, J., Huisman, J. A., Vereecken, H., Diekkrüger, B., & Bogena, H. R. (2018). Cosmic Ray Neutron Sensing for Simultaneous Soil Water Content and Biomass Quantification in Drought Conditions. Water Resources Research, 54(10), 7383-7402. doi:10.1029/2018wr022692 es_ES
dc.description.references Jana, R. B., Ershadi, A., & McCabe, M. F. (2016). Examining the relationship between intermediate scale soil moisture and terrestrial evaporation within a semi-arid grassland. doi:10.5194/hess-2016-186 es_ES
dc.description.references Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011 es_ES
dc.description.references Li, D., Schrön, M., Köhli, M., Bogena, H., Weimar, J., Jiménez Bello, M. A., … Hendricks Franssen, H. (2019). Can Drip Irrigation be Scheduled with Cosmic‐Ray Neutron Sensing? Vadose Zone Journal, 18(1), 190053. doi:10.2136/vzj2019.05.0053 es_ES
dc.description.references Lv, L., Franz, T. E., Robinson, D. A., & Jones, S. B. (2014). Measured and Modeled Soil Moisture Compared with Cosmic‐Ray Neutron Probe Estimates in a Mixed Forest. Vadose Zone Journal, 13(12), 1-13. doi:10.2136/vzj2014.06.0077 es_ES
dc.description.references McJannet, D., Franz, T., Hawdon, A., Boadle, D., Baker, B., Almeida, A., … Desilets, D. (2014). Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons. Water Resources Research, 50(6), 5235-5248. doi:10.1002/2014wr015513 es_ES
dc.description.references Molina, A. J., Latron, J., Rubio, C. M., Gallart, F., & Llorens, P. (2014). Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content. Journal of Hydrology, 516, 182-192. doi:10.1016/j.jhydrol.2014.01.040 es_ES
dc.description.references Rehfeldt, G. E., Jaquish, B. C., Sáenz-Romero, C., Joyce, D. G., Leites, L. P., Bradley St Clair, J., & López-Upton, J. (2014). Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Reforestation. Forest Ecology and Management, 324, 147-157. doi:10.1016/j.foreco.2014.02.040 es_ES
dc.description.references Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttleworth, W. J., Zeng, X., & Franz, T. E. (2014). Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale. Hydrology and Earth System Sciences, 18(11), 4363-4379. doi:10.5194/hess-18-4363-2014 es_ES
dc.description.references Ruiz-Peinado, R., Del Rio, M., & Montero, G. (2011). New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems, 20(1), 176. doi:10.5424/fs/2011201-11643 es_ES
dc.description.references Savage, M., Brown, P. M., & Feddema, J. (1996). The role of climate in a pine forest regeneration pulse in the southwestern United States. Écoscience, 3(3), 310-318. doi:10.1080/11956860.1996.11682348 es_ES
dc.description.references Schreiner-McGraw, A. P., Vivoni, E. R., Mascaro, G., & Franz, T. E. (2016). Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds. Hydrology and Earth System Sciences, 20(1), 329-345. doi:10.5194/hess-20-329-2016 es_ES
dc.description.references Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., … Zacharias, S. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 21(10), 5009-5030. doi:10.5194/hess-21-5009-2017 es_ES
dc.description.references Seeger, M., Errea, M.-P., Beguerı́a, S., Arnáez, J., Martı́, C., & Garcı́a-Ruiz, J. . (2004). Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish pyrenees. Journal of Hydrology, 288(3-4), 299-311. doi:10.1016/j.jhydrol.2003.10.012 es_ES
dc.description.references Seyfried, M. S., & Murdock, M. D. (2001). Response of a New Soil Water Sensor to Variable Soil, Water Content, and Temperature. Soil Science Society of America Journal, 65(1), 28-34. doi:10.2136/sssaj2001.65128x es_ES
dc.description.references Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., … Veblen, T. T. (2009). Widespread Increase of Tree Mortality Rates in the Western United States. Science, 323(5913), 521-524. doi:10.1126/science.1165000 es_ES
dc.description.references Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44(4). doi:10.1029/2008wr006829 es_ES
dc.description.references Wang, E., Smith, C. J., Macdonald, B. C. T., Hunt, J. R., Xing, H., Denmead, O. T., … Isaac, P. (2018). Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance. Agricultural Water Management, 204, 271-280. doi:10.1016/j.agwat.2018.04.017 es_ES
dc.description.references Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., … McDowell, N. G. (2012). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292-297. doi:10.1038/nclimate1693 es_ES
dc.description.references Zreda, M., Desilets, D., Ferré, T. P. A., & Scott, R. L. (2008). Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophysical Research Letters, 35(21). doi:10.1029/2008gl035655 es_ES
dc.description.references Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11), 4079-4099. doi:10.5194/hess-16-4079-2012 es_ES


This item appears in the following Collection(s)

Show simple item record