Mostrar el registro sencillo del ítem
dc.contributor.author | González-Sanchis, María | es_ES |
dc.contributor.author | García-Soro, Juan Miguel | es_ES |
dc.contributor.author | Molina, Antonio J. | es_ES |
dc.contributor.author | Lidón, Antonio | es_ES |
dc.contributor.author | Bautista, Inmaculada | es_ES |
dc.contributor.author | Rouzic, Elie | es_ES |
dc.contributor.author | Bogena, Heye R. | es_ES |
dc.contributor.author | Hendricks Franssen, Harrie-JanHarrie | es_ES |
dc.contributor.author | Campo García, Antonio Dámaso Del | es_ES |
dc.date.accessioned | 2021-07-01T03:32:29Z | |
dc.date.available | 2021-07-01T03:32:29Z | |
dc.date.issued | 2020-11-17 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168602 | |
dc.description.abstract | [EN] Water scarcity in semi-arid regions is expected to increase under climate change, which will significantly affect forest ecosystems by increasing fire risk, diminishing productivity and water provisioning. Eco-hydrological forest management is conceived here as an adequate strategy to buffer climate change effects and increase forest resilience. Under this context, soil moisture is a key variable to quantify the impacts of eco-hydrological forest management on forest-water relations. Cosmic-ray neutron and capacitance probes are two different techniques for measuring soil moisture, which differ greatly in the spatial scale of the measurement support (i.e., few centimeters vs. several hectares). This study compares the capability of both methodologies in assessing soil water dynamics as a key variable that reflects the effects of forest management in a semi-arid environment. To this end, two experimental plots were established in Sierra Calderona in the province of Valencia in Spain in a post-fire regeneration Aleppo pine forest with high tree density. One plot was thinned (T) and the other remained as control (C). Nine capacitance probes and one Cosmic Ray Neutron Probe (CRNP) were installed in each plot. First, the CRNP was calibrated and validated, and subsequently, the performance of both techniques was analyzed by comparing soil moisture and its relationship with environmental variables and stand transpiration. The validation results confirmed the general reliability of CRNP to obtain soil moisture under semi-arid conditions, with a Kling-Gupta efficiency coefficient (KGE) between 0.75 and 0.84, although this performance decreased significantly when dealing with extreme soil moisture (KGE: -0.06-0.02). A significant effect of forest biomass and litter layer was also observed on CRNP-derived soil moisture, which produced an overestimation of soil moisture. The performance of both methodologies was analyzed by partial correlations between soil moisture and environmental variables and transpiration, as well as by applying Boosted Regression Trees to reproduce tree transpiration with each soil moisture measurement technique together with the environmental variables. Both methodologies were capable to reproduce tree transpiration affected by soil moisture, environmental variables and thinning, although CRNP always appeared as the most affected by atmospheric driving forces. | es_ES |
dc.description.sponsorship | This study is a component of the research projects: EHIDROMED (CGL2014-58127-C3) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and FEDER funds, and LIFE17 CCA/ES/000063 RESILIENTFORESTS. AM is beneficiary of an APOSTD fellowship (APOSTD/2019/111) funded by the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Forest hydrology | es_ES |
dc.subject | Silviculture | es_ES |
dc.subject | Capacitance sensors | es_ES |
dc.subject | Cosmic-ray sensor | es_ES |
dc.subject | Pinus halepensis | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.title | Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/frwa.2020.552508 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2017-86839-C3-2-R/ES/INCORPORACION DE CRITERIOS ECO-HIDROLOGICOS Y DE RESILIENCIA FRENTE A PERTURBACIONES CLIMATICAS Y DEL FUEGO EN LA PLANIFICACION Y GESTION FORESTAL DE CUENCAS MEDITERRANEAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//LIFE17 CCA%2FES%2F000063/EU/Coupling water, fire and climate resilience with biomass production in Forestry to adapt watersheds to climate change/LIFE RESILIENT FORESTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-1-R/ES/MEJORAS EN LA EVALUACION DE LA RESPUESTA HIDROLOGICA Y SEDIMENTARIA EN CUENCAS MEDITERRANEAS FRENTE AL CAMBIO CLIMATICO Y AMBIENTAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F111/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | González-Sanchis, M.; García-Soro, JM.; Molina, AJ.; Lidón, A.; Bautista, I.; Rouzic, E.; Bogena, HR.... (2020). Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semi-arid pine forest: which is able to better asses the role of environmental conditions and thinning?. Frontiers in Water. 2:1-16. https://doi.org/10.3389/frwa.2020.552508 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/frwa.2020.552508 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.identifier.eissn | 2624-9375 | es_ES |
dc.relation.pasarela | S\429742 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., & Looms, M. C. (2017). Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications. Vadose Zone Journal, 16(8), vzj2017.04.0086. doi:10.2136/vzj2017.04.0086 | es_ES |
dc.description.references | Baatz, R., Bogena, H. R., Hendricks Franssen, H. ‐J., Huisman, J. A., Montzka, C., & Vereecken, H. (2015). An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resources Research, 51(4), 2030-2046. doi:10.1002/2014wr016443 | es_ES |
dc.description.references | Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Mountain landscapes offer few opportunities for high-elevation tree species migration. Global Change Biology, 20(5), 1441-1451. doi:10.1111/gcb.12504 | es_ES |
dc.description.references | Berdanier, A. B., Miniat, C. F., & Clark, J. S. (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiology, 36(8), 932-941. doi:10.1093/treephys/tpw027 | es_ES |
dc.description.references | Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks Franssen, H.-J., & Vereecken, H. (2013). Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research, 49(9), 5778-5791. doi:10.1002/wrcr.20463 | es_ES |
dc.description.references | Bogena, H. R., Huisman, J. A., Güntner, A., Hübner, C., Kusche, J., Jonard, F., … Vereecken, H. (2015). Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: a review. WIREs Water, 2(6), 635-647. doi:10.1002/wat2.1097 | es_ES |
dc.description.references | Brown, P. M., & Wu, R. (2005). CLIMATE AND DISTURBANCE FORCING OF EPISODIC TREE RECRUITMENT IN A SOUTHWESTERN PONDEROSA PINE LANDSCAPE. Ecology, 86(11), 3030-3038. doi:10.1890/05-0034 | es_ES |
dc.description.references | Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598. doi:10.1093/treephys/21.9.589 | es_ES |
dc.description.references | CASTILLO, V., GOMEZPLAZA, A., & MARTINEZMENA, M. (2003). The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology, 284(1-4), 114-130. doi:10.1016/s0022-1694(03)00264-6 | es_ES |
dc.description.references | Chirici, G., Mura, M., McInerney, D., Py, N., Tomppo, E. O., Waser, L. T., … McRoberts, R. E. (2016). A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sensing of Environment, 176, 282-294. doi:10.1016/j.rse.2016.02.001 | es_ES |
dc.description.references | Coops, N. C., Waring, R. H., & Law, B. E. (2005). Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecological Modelling, 183(1), 107-124. doi:10.1016/j.ecolmodel.2004.08.002 | es_ES |
dc.description.references | Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. doi:10.1017/cbo9780511801389 | es_ES |
dc.description.references | Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7 | es_ES |
dc.description.references | Del Campo, A. D., González-Sanchis, M., García-Prats, A., Ceacero, C. J., & Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology, 264, 266-282. doi:10.1016/j.agrformet.2018.10.016 | es_ES |
dc.description.references | Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J., & García-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology, 565, 74-86. doi:10.1016/j.jhydrol.2018.08.013 | es_ES |
dc.description.references | Del Campo, A. D., González-Sanchis, M., Lidón, A., García-Prats, A., Lull, C., Bautista, I., … Francés, F. (2017). Ecohydrological-Based Forest Management in Semi-arid Climate. Ecosystem Services of Headwater Catchments, 45-57. doi:10.1007/978-3-319-57946-7_6 | es_ES |
dc.description.references | Del Campo, A. D., González-Sanchis, M., Molina, A. J., García-Prats, A., Ceacero, C. J., & Bautista, I. (2019). Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. Forest Ecology and Management, 438, 163-175. doi:10.1016/j.foreco.2019.02.020 | es_ES |
dc.description.references | Desilets, D., & Zreda, M. (2003). Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters, 206(1-2), 21-42. doi:10.1016/s0012-821x(02)01088-9 | es_ES |
dc.description.references | Desilets, D., Zreda, M., & Ferré, T. P. A. (2010). Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resources Research, 46(11). doi:10.1029/2009wr008726 | es_ES |
dc.description.references | Detty, J. M., & McGuire, K. J. (2010). Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resources Research, 46(7). doi:10.1029/2009wr008102 | es_ES |
dc.description.references | Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813. doi:10.1111/j.1365-2656.2008.01390.x | es_ES |
dc.description.references | Flinn, K. M., & Marks, P. L. (2007). AGRICULTURAL LEGACIES IN FOREST ENVIRONMENTS: TREE COMMUNITIES, SOIL PROPERTIES, AND LIGHT AVAILABILITY. Ecological Applications, 17(2), 452-463. doi:10.1890/05-1963 | es_ES |
dc.description.references | Franz, T. E., Zreda, M., Rosolem, R., & Ferre, T. P. A. (2012). Field Validation of a Cosmic‐Ray Neutron Sensor Using a Distributed Sensor Network. Vadose Zone Journal, 11(4). doi:10.2136/vzj2012.0046 | es_ES |
dc.description.references | Gardner, C. M. K., Dean, T. J., & Cooper, J. D. (1998). Soil Water Content Measurement with a High-Frequency Capacitance Sensor. Journal of Agricultural Engineering Research, 71(4), 395-403. doi:10.1006/jaer.1998.0338 | es_ES |
dc.description.references | González-Sanchis, M., Ruiz-Pérez, G., Del Campo, A. D., Garcia-Prats, A., Francés, F., & Lull, C. (2019). Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility. Journal of Environmental Management, 231, 653-665. doi:10.1016/j.jenvman.2018.10.078 | es_ES |
dc.description.references | Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 | es_ES |
dc.description.references | Hawdon, A., McJannet, D., & Wallace, J. (2014). Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia. Water Resources Research, 50(6), 5029-5043. doi:10.1002/2013wr015138 | es_ES |
dc.description.references | Hawley, M. E., Jackson, T. J., & McCuen, R. H. (1983). Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology, 62(1-4), 179-200. doi:10.1016/0022-1694(83)90102-6 | es_ES |
dc.description.references | Heidbüchel, I., Güntner, A., & Blume, T. (2016). Use of cosmic-ray neutron sensors for soil moisture monitoring in forests. Hydrology and Earth System Sciences, 20(3), 1269-1288. doi:10.5194/hess-20-1269-2016 | es_ES |
dc.description.references | Jakobi, J., Huisman, J. A., Vereecken, H., Diekkrüger, B., & Bogena, H. R. (2018). Cosmic Ray Neutron Sensing for Simultaneous Soil Water Content and Biomass Quantification in Drought Conditions. Water Resources Research, 54(10), 7383-7402. doi:10.1029/2018wr022692 | es_ES |
dc.description.references | Jana, R. B., Ershadi, A., & McCabe, M. F. (2016). Examining the relationship between intermediate scale soil moisture and terrestrial evaporation within a semi-arid grassland. doi:10.5194/hess-2016-186 | es_ES |
dc.description.references | Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011 | es_ES |
dc.description.references | Li, D., Schrön, M., Köhli, M., Bogena, H., Weimar, J., Jiménez Bello, M. A., … Hendricks Franssen, H. (2019). Can Drip Irrigation be Scheduled with Cosmic‐Ray Neutron Sensing? Vadose Zone Journal, 18(1), 190053. doi:10.2136/vzj2019.05.0053 | es_ES |
dc.description.references | Lv, L., Franz, T. E., Robinson, D. A., & Jones, S. B. (2014). Measured and Modeled Soil Moisture Compared with Cosmic‐Ray Neutron Probe Estimates in a Mixed Forest. Vadose Zone Journal, 13(12), 1-13. doi:10.2136/vzj2014.06.0077 | es_ES |
dc.description.references | McJannet, D., Franz, T., Hawdon, A., Boadle, D., Baker, B., Almeida, A., … Desilets, D. (2014). Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons. Water Resources Research, 50(6), 5235-5248. doi:10.1002/2014wr015513 | es_ES |
dc.description.references | Molina, A. J., Latron, J., Rubio, C. M., Gallart, F., & Llorens, P. (2014). Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content. Journal of Hydrology, 516, 182-192. doi:10.1016/j.jhydrol.2014.01.040 | es_ES |
dc.description.references | Rehfeldt, G. E., Jaquish, B. C., Sáenz-Romero, C., Joyce, D. G., Leites, L. P., Bradley St Clair, J., & López-Upton, J. (2014). Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Reforestation. Forest Ecology and Management, 324, 147-157. doi:10.1016/j.foreco.2014.02.040 | es_ES |
dc.description.references | Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttleworth, W. J., Zeng, X., & Franz, T. E. (2014). Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale. Hydrology and Earth System Sciences, 18(11), 4363-4379. doi:10.5194/hess-18-4363-2014 | es_ES |
dc.description.references | Ruiz-Peinado, R., Del Rio, M., & Montero, G. (2011). New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems, 20(1), 176. doi:10.5424/fs/2011201-11643 | es_ES |
dc.description.references | Savage, M., Brown, P. M., & Feddema, J. (1996). The role of climate in a pine forest regeneration pulse in the southwestern United States. Écoscience, 3(3), 310-318. doi:10.1080/11956860.1996.11682348 | es_ES |
dc.description.references | Schreiner-McGraw, A. P., Vivoni, E. R., Mascaro, G., & Franz, T. E. (2016). Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds. Hydrology and Earth System Sciences, 20(1), 329-345. doi:10.5194/hess-20-329-2016 | es_ES |
dc.description.references | Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., … Zacharias, S. (2017). Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 21(10), 5009-5030. doi:10.5194/hess-21-5009-2017 | es_ES |
dc.description.references | Seeger, M., Errea, M.-P., Beguerı́a, S., Arnáez, J., Martı́, C., & Garcı́a-Ruiz, J. . (2004). Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish pyrenees. Journal of Hydrology, 288(3-4), 299-311. doi:10.1016/j.jhydrol.2003.10.012 | es_ES |
dc.description.references | Seyfried, M. S., & Murdock, M. D. (2001). Response of a New Soil Water Sensor to Variable Soil, Water Content, and Temperature. Soil Science Society of America Journal, 65(1), 28-34. doi:10.2136/sssaj2001.65128x | es_ES |
dc.description.references | Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., … Veblen, T. T. (2009). Widespread Increase of Tree Mortality Rates in the Western United States. Science, 323(5913), 521-524. doi:10.1126/science.1165000 | es_ES |
dc.description.references | Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., & Hopmans, J. W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resources Research, 44(4). doi:10.1029/2008wr006829 | es_ES |
dc.description.references | Wang, E., Smith, C. J., Macdonald, B. C. T., Hunt, J. R., Xing, H., Denmead, O. T., … Isaac, P. (2018). Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance. Agricultural Water Management, 204, 271-280. doi:10.1016/j.agwat.2018.04.017 | es_ES |
dc.description.references | Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., … McDowell, N. G. (2012). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292-297. doi:10.1038/nclimate1693 | es_ES |
dc.description.references | Zreda, M., Desilets, D., Ferré, T. P. A., & Scott, R. L. (2008). Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophysical Research Letters, 35(21). doi:10.1029/2008gl035655 | es_ES |
dc.description.references | Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11), 4079-4099. doi:10.5194/hess-16-4079-2012 | es_ES |