Mostrar el registro sencillo del ítem
dc.contributor.author | Doménech-Carbó, Antonio | es_ES |
dc.contributor.author | Domenech Carbo, Mª Teresa | es_ES |
dc.contributor.author | Osete Cortina, Laura | es_ES |
dc.contributor.author | Donnici, Margherita | es_ES |
dc.contributor.author | Guasch-Ferré, Núria | es_ES |
dc.contributor.author | Gasol-Fargas, Rosa M. | es_ES |
dc.contributor.author | Iglesias-Campos, Manuel Ángel | es_ES |
dc.date.accessioned | 2021-07-01T03:32:32Z | |
dc.date.available | 2021-07-01T03:32:32Z | |
dc.date.issued | 2020-07-16 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168604 | |
dc.description.abstract | [EN] The degradation of laboratory oil paint film specimens containing indigo and Prussian blue pigments and pictorial samples from the Sant Francesc de Paula painting exhibited in the Tomas Balvey Arxiu Museum (Cardedeu (Catalonia), Spain) has been studied by voltammetry of immobilized particles. This technique, combined with light microscopy, scanning electron microscopy-energy dispersive X-ray analysis, nanoindentation-atomic force microscopy, attenuated total reflectance-Fourier-transform infrared spectroscopy and gas chromatography-mass spectroscopy techniques permits the proposal of a dual scheme for the degradation of the pigments when naturally aged and submitted to accelerated UVA aging. Under conditions of moderate temperature, humidity and natural illumination, and low gradients of these parameters, Prussian blue acts as a radical scavenger moderating the production of reactive oxygen species produced in the oil binding medium by the action of ultraviolet radiation, resulting in the formation, in the solid state, of the solid-solution, {KFeIII[Fe-II(CN)(6)]}(x){Fe-III[Fe-III(CN)(6)]}(1-x), known as Berlin green, which then promotes the formation of indigo adducts with radicals. In several localized areas of the Sant Francesc de Paula paint showing strong degradation, Prussian blue acts as a promoter of the indigo oxidation to isatin, thus resulting in a considerable chromatic shift. | es_ES |
dc.description.sponsorship | Financial support was received from the MINECO Project CTQ2017-85317-C2-1-P which is supported with Ministerio de Economia, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) and Agencia Estatal de Investigacion (AEI). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | Heritage Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrochemistry | es_ES |
dc.subject | Oil paints | es_ES |
dc.subject | Prussian blue | es_ES |
dc.subject | Indigo | es_ES |
dc.subject | Deterioration | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.title | Electrochemical assessment of pigments-binding medium interactions in oil paint deterioration: a case study on indigo and Prussian blue | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s40494-020-00415-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-85317-C2-1-P/ES/APLICACION DE TECNICAS AVANZADAS DE MICROSCOPIA EN EL ESTUDIO DEL PATRIMONIO CERAMICO Y VITREO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni | es_ES |
dc.description.bibliographicCitation | Doménech-Carbó, A.; Domenech Carbo, MT.; Osete Cortina, L.; Donnici, M.; Guasch-Ferré, N.; Gasol-Fargas, RM.; Iglesias-Campos, MÁ. (2020). Electrochemical assessment of pigments-binding medium interactions in oil paint deterioration: a case study on indigo and Prussian blue. Heritage Science. 8(1):1-17. https://doi.org/10.1186/s40494-020-00415-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s40494-020-00415-x | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2050-7445 | es_ES |
dc.relation.pasarela | S\423720 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Matteini M, Moles A. La Chimica nel Restauro. Firenze: Nardini; 1989. | es_ES |
dc.description.references | Mills JS, White R. The organic chemistry of museum objects. London: Buttersworth; 1994. | es_ES |
dc.description.references | Berrie BH, Strumfels Y. Change is permanent: thoughts on the fading of cochineal-based watercolor pigments. Herit Sci. 2017;5:5–30. | es_ES |
dc.description.references | Erhardt D, Tumosa CS, Mecklenburg MF. Long-term chemical and physical processes in oil paint films. Stud Conserv. 2005;50:143–50. | es_ES |
dc.description.references | Meilunas RJ, Bentsen JG, Steinberg A. Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv. 1990;35:33–51. | es_ES |
dc.description.references | Mallégol J, Lemaire J, Gardette JL. Drier influence on the curing of linseed oil. Progr Org Coat. 2009;39:107–13. | es_ES |
dc.description.references | Breitbach AM, Rocha JC, Gaylarde CC. Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J Coat Technol Res. 2011;8:619–28. | es_ES |
dc.description.references | Robinet L, Corbeil MC. The characterization of metal soaps. Stud Conserv. 2003;48:23–40. | es_ES |
dc.description.references | Plater MJ, De Silva B, Gelbrich T, Hursthouse MB, Higgitt CL, Saunders DR. The characterization of lead fatty acid soaps in “protusions” in aged traditional oil paint”. Polyhedron. 2003;22:3171–9. | es_ES |
dc.description.references | Cotte M, Checroun E, Susini J, Dumas P, Tchoereloff P, Bernard M, Walter P. Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums. Talanta. 2006;70:1136–42. | es_ES |
dc.description.references | Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M. Attenuated total reflection micro FTIR characterization of pigment-binder interaction in reconstructed paint films. Anal Bioanal Chem. 2008;392:65–76. | es_ES |
dc.description.references | Keune K, van Loon A, Boon JJ. SEM Backscattered-Electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Micros Microanal. 2011;22:448–57. | es_ES |
dc.description.references | Keune K, Boon JJ. Analytical imaging studies of Saint cross-sections illustrate the oil paint defect of lead soap aggregate formation. Stud Conserv. 2007;52:161–76. | es_ES |
dc.description.references | Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta. 2009;79:419–28. | es_ES |
dc.description.references | Genestar C, Pons C. Earth pigments in painting: characterization and differentiation by means FTIR spectroscopy. Anal Bioanal Chem. 2005;382:269–74. | es_ES |
dc.description.references | Casanova-González E, García-Bucio A, Ruvalcaba-Sil JL, Santos-Vasquez V, Esquivel B, Falcón T, Arroyo E, Zetina S, Roldán ML, Domingo C. Surface-enhanced Raman spectroscopy spectra of Mexican dyestuffs. J Raman Spectrosc. 2012;43:1551–9. | es_ES |
dc.description.references | Higgitt C, Spring M, Saunders D. Pigment-medium interactions in oil paint films containing red lead or lead-tin yellow. Natl Gallery Tech Bull. 2003;24:75–96. | es_ES |
dc.description.references | Keune K, Van Loon A, Boon JJ. SEM backscatteredelectron images of paint cross-sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal. 2011;17:696–701. | es_ES |
dc.description.references | Kirby J, Saunders D. Fading and colour Change of Prussian blue: methods of manufacture and the influence of extenders. Natl Gallery Techn Bull. 2004;25:73–99. | es_ES |
dc.description.references | Samain L, Gilbert B, Grandjean F, Long GJ, Strivay D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J Anal Atom Spectrom. 2013;28:524–35. | es_ES |
dc.description.references | Weerd J, Van Der Loon A, Boon JJ. FTIR studies of the effects of pigments on the aging of oil. Stud Conserv. 2005;50:3–22. | es_ES |
dc.description.references | Cotte M, Checroun E, De Nolf W, Taniguchi Y, De Viguerie L, Burghammer M, Walter P, Rivard C, Salomé M, Janssens K, Susini J. Lead soaps in paintings: friends or foes? Stud Conserv. 2017;62:2–23. | es_ES |
dc.description.references | De Santis A, Mattei E, Pelosi C. Micro-Raman and stratigraphic studies of the paintings on the ‘Cembalo’ Model musical instrument (AD 1650) and laser-induced degradation of the detected pigments. J Raman Spectrosc. 2007;38:1368–78. | es_ES |
dc.description.references | Scholz F, Meyer B. Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem. 1998;20:1–86. | es_ES |
dc.description.references | Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A. Electrochemistry of immobilized particles and droplets. 2nd ed. Berlin-Heidelberg: Springer; 2014. | es_ES |
dc.description.references | Doménech-Carbó A, Labuda J, Scholz F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem. 2013;85:609–31. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT, Costa V. Electrochemical methods for archaeometry, conservation and restoration (monographs in electrochemistry series scholz F edit). Berlin: Springer; 2009. | es_ES |
dc.description.references | Doménech-Carbó A. Electrochemistry for conservation science. J Solid State Electrochem. 2010;14:349–51. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT. Electroanalytical techniques in archaeological and art conservation. Pure Appl Chem. 2018;90:447–62. | es_ES |
dc.description.references | Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I, López-Miras MM. Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. J Solid State Electrochem. 2016;20:3287–302. | es_ES |
dc.description.references | Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I. Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles. Herit Sci. 2017;5:8. | es_ES |
dc.description.references | VVAA. “Sant Francesc de Paula”. Anàlisi d’una restauració in Jornada tècnica sobre la restauració de l’obra pictòrica de Sant Francesv [Francesc] de Paula, 16 juny, 2017, Cardedeu, Barcelona. | es_ES |
dc.description.references | Gasol R. Memòria de la conservació-restauració del quadre “Sant Francesc de Paula” (Núm. Reg. 2258) del Museu Arxiu Tomàs Balvey de Cardedeu. Oficina de Patrimoni Cultural de la Diputació de Barcelona. Barcelona: 2016. | es_ES |
dc.description.references | Scholz F, Dostal A. The formal potentials of the solid metal hexacyanometalates. Angew Chem Int Ed. 1995;34:2685–7. | es_ES |
dc.description.references | Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ. Electrochemical study of microcrystalline solid prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction. J Phys Chem. 1995;99:2096–103. | es_ES |
dc.description.references | Dostal A, Kauschka G, Reddy SJ, Scholz F. Lattice contractions and expansions which accompany the electrochemical conversion of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions. J Electroanal Chem. 1996;406:155–63. | es_ES |
dc.description.references | Bond AM, Marken F, Hill E, Compton RG, Hügel H. The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans. 1997;2:1735–42. | es_ES |
dc.description.references | Komorsky-Lovric S, Mircevski V, Scholz F. Voltammetry of organic microparticles. Mikrochim Acta. 1999;132:67–77. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT, Vázquez De Agredos-Pascual ML. Dehydroindigo: a new piece into the maya blue puzzle from the voltammetry of microparticles approach. J Phys Chem B. 2006;110:6027–39. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT, Vázquez De Agredos-Pascual ML. Electrochemical monitoring Maya Blue preparation from Maya’s ancient procedures. J Solid State Electrochem. 2007;11:1335–46. | es_ES |
dc.description.references | Grosjean D, Whitmore PM, Cass GR. Ozone fading of natural organic colorants—mechanisms and products of the reaction of ozone with indigos. Environ Sci Technol. 1988;22:292–8. | es_ES |
dc.description.references | Novotná P, Boon JJ, van der Horst J. Pacákova V Photodegradation of indigo in dichloro-methane solution. Color Technol. 2003;119:121–7. | es_ES |
dc.description.references | Yamazaki S, Sobolewski AL, Domcke W. Molecular mechanisms of the photostability of indigo. PhysChemChemPhys. 2011;13:1618–28. | es_ES |
dc.description.references | Inga C, Ortíz E, Alvarez-Idaboy JR, Vivier-Bunge A. Molecular description of indigo oxidation mechanisms initiated by OH and OOH radicals. J Phys Chem A. 2012;116:3643–51. | es_ES |
dc.description.references | Van Espen P. Electron probe X-ray microanalysis. In: Fitzgerald AF, Storey BE, Fabian D, editors. Quantitative microbeam analysis. Bristol: Institute of Physics Publishing; 1992. | es_ES |
dc.description.references | Derjaguin BV, Muller VM, Toropov YuP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975;53:314–26. | es_ES |
dc.description.references | Lee Y, Martín-Rey S, Osete-Cortina L, Martín-Sánchez I, Bolívar-Galiano F. Doménech-Carbó MT Evaluation of a gelatin-based adhesive for historic paintings that incorporates citronella oil as an eco-friendly biocide. J Adhes Sci Technol. 2018;32:2320–49. | es_ES |
dc.description.references | Doménech-Carbó MT, Casas-Catalán MJ, Doménech-Carbó A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. Analytical study of canvas painting collection from the Basilica de la Virgen de los Desamparados using SEM/EDX, FT-IR, GC and electrochemical techniques. Fresenius’ J Anal. Chem. 2001;369:571–5. | es_ES |
dc.description.references | Woodward, J. Praeparato caeruli Prussiaci ex Germania missa ad Johannem Woodward. Philosophical Transactions. XXXIII, no. 381, January–February 1724, pp. 15–17. | es_ES |
dc.description.references | Salvant J, Barthel E, Menu M. Nanoindentation and the micromechanics of Van Gogh oil paints, hal-00593798; 2011. http://hal.archives-ouvertes.fr. Accessed 02 Apr 2020. | es_ES |
dc.description.references | Monico L, Rosi F, Miliani C, Daveri A, Brunetti BG. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim. Acta A Mol Biomol Spectrosc. 2013;116:270–80. | es_ES |
dc.description.references | Christensen PA, Hamnett A, Higgins SJ. A study of electrochemically grown Prussian blue films using Fourier-transform infrared spectroscopy. J Chem Soc Dalton Trans 1990; 2233–8. | es_ES |
dc.description.references | Wang N, He L, Zhao X, Simon S. Comparative analysis of eastern and western drying-oil binding media used in polychromic artworks by pyrolysis–gas chromatography/mass spectrometry under the influence of pigments. Microchem J. 2015;123:201–10. | es_ES |
dc.description.references | Diculescu VC, Kumbhat S, Oliveira-Brett AM. Electrochemical behaviour of isatin at a glassy carbon electrode. Anal Chim Acta. 2006;575:190–7. | es_ES |
dc.description.references | Grandjean F, Long GJ, Samain L. The pivotal role of mössbauer spectroscopy in the characterization of prussian blue and related iron cyanide complexes. Mössbauer Effect Ref Data J. 2012;35:143–53. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X. Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta. 2007;71:1569–79. | es_ES |
dc.description.references | Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA. ‘One-touch’ voltammetry of microparticles for the identification of corrosion products in archaeological lead. Electroanalysis. 2011;23:1391–400. | es_ES |
dc.description.references | Castañeda Delgado M. El índigo en la pintura de caballete novohispana: mecanismos de deterioro. Intervención. 2019;1:25–35. | es_ES |
dc.description.references | Ben Hmida S, Ladhari N. Study of parameters affecting dry and wet ozone bleaching of denim fabric. Ozone Sci Eng. 2015;38:175–80. | es_ES |
dc.description.references | Chumming P, Xianqing J. Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem. 2009;13:1273–8. | es_ES |
dc.description.references | Prabhu P, Suresh Babu R, Sriman Narayanan S. Synergetic effect of Prussian blue film with gold nanoparticle graphite-wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem. 2014;18:883–91. | es_ES |
dc.description.references | Noël J-M, Médard J, Combellas C, Kanoufi F. Prussian blue degradation during hydrogen peroxide reduction: a scanning electrochemical study on the role of the hydroxide ion and hydroxyl radical. ChemElectroChem. 2016;3:1178–84. | es_ES |
dc.description.references | Zhang W, Hu S, Yin JJ, He W, Lu W, Ma W, Gu N, Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavenger. J Am Chem Soc. 2016;138:5860–5. | es_ES |
dc.description.references | Chen J, Wang Q, Huang L, Zhang H, Rong K, Zhang H, Dong S. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018;11:4905–13. | es_ES |