van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740.
Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003
Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477
[+]
van der Aalst, W. M., Bolt, A., & van Zelst, S. J. (2017). Rapidprom: Mine your processes and not just your data. arXiv:1703.03740.
Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003
Adé, H., de Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1-2), 119-154. doi:10.1007/bf00993477
Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Haro, B. B., … Hager, G. D. (2017). A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery. IEEE Transactions on Biomedical Engineering, 64(9), 2025-2041. doi:10.1109/tbme.2016.2647680
Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as inverse planning. Cognition, 113(3), 329-349. doi:10.1016/j.cognition.2009.07.005
Blum, T., Padoy, N., Feußner, H., & Navab, N. (2008). Workflow mining for visualization and analysis of surgeries. International Journal of Computer Assisted Radiology and Surgery, 3(5), 379-386. doi:10.1007/s11548-008-0239-0
Camacho, R., Carreira, P., Lynce, I., & Resendes, S. (2014). An ontology-based approach to conflict resolution in Home and Building Automation Systems. Expert Systems with Applications, 41(14), 6161-6173. doi:10.1016/j.eswa.2014.04.017
Caruana, R. (1997). Machine Learning, 28(1), 41-75. doi:10.1023/a:1007379606734
Liming Chen, Hoey, J., Nugent, C. D., Cook, D. J., & Zhiwen Yu. (2012). Sensor-Based Activity Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 790-808. doi:10.1109/tsmcc.2012.2198883
Chen, L., Nugent, C. D., & Wang, H. (2012). A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Transactions on Knowledge and Data Engineering, 24(6), 961-974. doi:10.1109/tkde.2011.51
Chen, Y., Wang, J., Huang, M., & Yu, H. (2019). Cross-position activity recognition with stratified transfer learning. Pervasive and Mobile Computing, 57, 1-13. doi:10.1016/j.pmcj.2019.04.004
Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: a survey. Knowledge and Information Systems, 36(3), 537-556. doi:10.1007/s10115-013-0665-3
Dai, P., Di, H., Dong, L., Tao, L., & Xu, G. (2008). Group Interaction Analysis in Dynamic Context. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1), 275-282. doi:10.1109/tsmcb.2007.909939
Ding, R., Li, X., Nie, L., Li, J., Si, X., Chu, D., … Zhan, D. (2018). Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Sensors, 19(1), 57. doi:10.3390/s19010057
Duong, T., Phung, D., Bui, H., & Venkatesh, S. (2009). Efficient duration and hierarchical modeling for human activity recognition. Artificial Intelligence, 173(7-8), 830-856. doi:10.1016/j.artint.2008.12.005
Fürnkranz, J. (1999). Artificial Intelligence Review, 13(1), 3-54. doi:10.1023/a:1006524209794
Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining. ACM Computing Surveys, 38(3), 9. doi:10.1145/1132960.1132963
Hoey, J., Poupart, P., Bertoldi, A. von, Craig, T., Boutilier, C., & Mihailidis, A. (2010). Automated handwashing assistance for persons with dementia using video and a partially observable Markov decision process. Computer Vision and Image Understanding, 114(5), 503-519. doi:10.1016/j.cviu.2009.06.008
Hong, J., Suh, E., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with Applications, 36(4), 8509-8522. doi:10.1016/j.eswa.2008.10.071
Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation Learning. ACM Computing Surveys, 50(2), 1-35. doi:10.1145/3054912
Kalra, L., Zhao, X., Soto, A. J., & Milios, E. (2013). Detection of daily living activities using a two-stage Markov model. Journal of Ambient Intelligence and Smart Environments, 5(3), 273-285. doi:10.3233/ais-130208
Kardas, K., & Cicekli, N. K. (2017). SVAS: Surveillance Video Analysis System. Expert Systems with Applications, 89, 343-361. doi:10.1016/j.eswa.2017.07.051
Krüger, F., Nyolt, M., Yordanova, K., Hein, A., & Kirste, T. (2014). Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLoS ONE, 9(11), e109381. doi:10.1371/journal.pone.0109381
Neumann, A., Elbrechter, C., Pfeiffer-Leßmann, N., Kõiva, R., Carlmeyer, B., Rüther, S., … Ritter, H. J. (2017). «KogniChef»: A Cognitive Cooking Assistant. KI - Künstliche Intelligenz, 31(3), 273-281. doi:10.1007/s13218-017-0488-6
Papadimitriou, P., Dasdan, A., & Garcia-Molina, H. (2010). Web graph similarity for anomaly detection. Journal of Internet Services and Applications, 1(1), 19-30. doi:10.1007/s13174-010-0003-x
Peng, L., Chen, L., Ye, Z., & Zhang, Y. (2018). AROMA. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1-16. doi:10.1145/3214277
Rosen, J., Solazzo, M., Hannaford, B., & Sinanan, M. (2002). Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents’ Learning Curve Using Hidden Markov Model. Computer Aided Surgery, 7(1), 49-61. doi:10.3109/10929080209146016
Sadilek, A., & Kautz, H. (2012). Location-Based Reasoning about Complex Multi-Agent Behavior. Journal of Artificial Intelligence Research, 43, 87-133. doi:10.1613/jair.3421
Sanchez, D., Tentori, M., & Favela, J. (2008). Activity Recognition for the Smart Hospital. IEEE Intelligent Systems, 23(2), 50-57. doi:10.1109/mis.2008.18
Škrjanc, I., Andonovski, G., Ledezma, A., Sipele, O., Iglesias, J. A., & Sanchis, A. (2018). Evolving cloud-based system for the recognition of drivers’ actions. Expert Systems with Applications, 99, 231-238. doi:10.1016/j.eswa.2017.11.008
Sun, X., Kashima, H., & Ueda, N. (2013). Large-Scale Personalized Human Activity Recognition Using Online Multitask Learning. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2551-2563. doi:10.1109/tkde.2012.246
Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., et al. (2016). The sphere challenge. arXiv:1603.00797.
Voulodimos, A., Kosmopoulos, D., Vasileiou, G., Sardis, E., Anagnostopoulos, V., Lalos, C., … Varvarigou, T. (2012). A Threefold Dataset for Activity and Workflow Recognition in Complex Industrial Environments. IEEE Multimedia, 19(3), 42-52. doi:10.1109/mmul.2012.31
Wallace, C. S. (1999). Minimum Message Length and Kolmogorov Complexity. The Computer Journal, 42(4), 270-283. doi:10.1093/comjnl/42.4.270
[-]