- -

Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez, Javier es_ES
dc.contributor.author Guardiola Garcia, Jose Luis es_ES
dc.contributor.author Pérez Jiménez, Alberto José es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2021-07-01T03:32:44Z
dc.date.available 2021-07-01T03:32:44Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168609
dc.description.abstract [EN] Inspecting a 3D object which shape has elastic manufacturing tolerances in order to find defects is a challenging and time-consuming task. This task usually involves humans, either in the specification stage followed by some automatic measurements, or in other points along the process. Even when a detailed inspection is performed, the measurements are limited to a few dimensions instead of a complete examination of the object. In this work, a probabilistic method to evaluate 3D surfaces is presented. This algorithm relies on a training stage to learn the shape of the object building a statistical shape model. Making use of this model, any inspected object can be evaluated obtaining a probability that the whole object or any of its dimensions are compatible with the model, thus allowing to easily find defective objects. Results in simulated and real environments are presented and compared to two different alternatives. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2020/1. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 3D surface evaluation es_ES
dc.subject 3D reconstruction es_ES
dc.subject Statistical shape model es_ES
dc.subject Quality assessment es_ES
dc.subject 3D metrics es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s20226554 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCN%2F2020%2F1_IA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Pérez, J.; Guardiola Garcia, JL.; Pérez Jiménez, AJ.; Perez-Cortes, J. (2020). Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM). Sensors. 20(22):1-16. https://doi.org/10.3390/s20226554 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s20226554 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 33212763 es_ES
dc.identifier.pmcid PMC7696967 es_ES
dc.relation.pasarela S\423563 es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.description.references Brosed, F. J., Aguilar, J. J., Guillomía, D., & Santolaria, J. (2010). 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot. Sensors, 11(1), 90-110. doi:10.3390/s110100090 es_ES
dc.description.references Perez-Cortes, J.-C., Perez, A., Saez-Barona, S., Guardiola, J.-L., & Salvador, I. (2018). A System for In-Line 3D Inspection without Hidden Surfaces. Sensors, 18(9), 2993. doi:10.3390/s18092993 es_ES
dc.description.references Bi, Z. M., & Wang, L. (2010). Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 26(5), 403-413. doi:10.1016/j.rcim.2010.03.003 es_ES
dc.description.references Fu, K., Peng, J., He, Q., & Zhang, H. (2020). Single image 3D object reconstruction based on deep learning: A review. Multimedia Tools and Applications, 80(1), 463-498. doi:10.1007/s11042-020-09722-8 es_ES
dc.description.references Pichat, J., Iglesias, J. E., Yousry, T., Ourselin, S., & Modat, M. (2018). A Survey of Methods for 3D Histology Reconstruction. Medical Image Analysis, 46, 73-105. doi:10.1016/j.media.2018.02.004 es_ES
dc.description.references Pathak, V. K., Singh, A. K., Sivadasan, M., & Singh, N. K. (2016). Framework for Automated GD&T Inspection Using 3D Scanner. Journal of The Institution of Engineers (India): Series C, 99(2), 197-205. doi:10.1007/s40032-016-0337-7 es_ES
dc.description.references Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranić, D. V. (2005). Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4), 345-387. doi:10.1145/1118890.1118893 es_ES
dc.description.references Mian, A., Bennamoun, M., & Owens, R. (2009). On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes. International Journal of Computer Vision, 89(2-3), 348-361. doi:10.1007/s11263-009-0296-z es_ES
dc.description.references Liu, Z., Zhao, C., Wu, X., & Chen, W. (2017). An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors. Sensors, 17(3), 451. doi:10.3390/s17030451 es_ES
dc.description.references Barra, V., & Biasotti, S. (2013). 3D shape retrieval using Kernels on Extended Reeb Graphs. Pattern Recognition, 46(11), 2985-2999. doi:10.1016/j.patcog.2013.03.019 es_ES
dc.description.references Xie, J., Dai, G., Zhu, F., Wong, E. K., & Fang, Y. (2017). DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7), 1335-1345. doi:10.1109/tpami.2016.2596722 es_ES
dc.description.references Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. doi:10.1016/j.isprsjprs.2013.04.009 es_ES
dc.description.references Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208. doi:10.1016/j.geomorph.2016.11.009 es_ES
dc.description.references Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., & Pérez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1-10. doi:10.1016/j.jag.2018.05.015 es_ES
dc.description.references Burdziakowski, P., Specht, C., Dabrowski, P. S., Specht, M., Lewicka, O., & Makar, A. (2020). Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors, 20(14), 4000. doi:10.3390/s20144000 es_ES
dc.description.references MARDIA, K. V., & DRYDEN, I. L. (1989). The statistical analysis of shape data. Biometrika, 76(2), 271-281. doi:10.1093/biomet/76.2.271 es_ES
dc.description.references Heimann, T., & Meinzer, H.-P. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 13(4), 543-563. doi:10.1016/j.media.2009.05.004 es_ES
dc.description.references Ambellan, F., Tack, A., Ehlke, M., & Zachow, S. (2019). Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Medical Image Analysis, 52, 109-118. doi:10.1016/j.media.2018.11.009 es_ES
dc.description.references Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2016). A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 30, 108-119. doi:10.1016/j.media.2016.01.005 es_ES
dc.description.references Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2017). Large Scale 3D Morphable Models. International Journal of Computer Vision, 126(2-4), 233-254. doi:10.1007/s11263-017-1009-7 es_ES
dc.description.references Erus, G., Zacharaki, E. I., & Davatzikos, C. (2014). Individualized statistical learning from medical image databases: Application to identification of brain lesions. Medical Image Analysis, 18(3), 542-554. doi:10.1016/j.media.2014.02.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem