Mostrar el registro sencillo del ítem
dc.contributor.author | Perea-García, Ana | es_ES |
dc.contributor.author | Andrés-Bordería, Amparo | es_ES |
dc.contributor.author | Vera Sirera, Francisco José | es_ES |
dc.contributor.author | PEREZ AMADOR, MIGUEL ANGEL | es_ES |
dc.contributor.author | Puig, Sergi | es_ES |
dc.contributor.author | Peñarrubia, Lola | es_ES |
dc.date.accessioned | 2021-07-01T03:32:48Z | |
dc.date.available | 2021-07-01T03:32:48Z | |
dc.date.issued | 2020-07-23 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168611 | |
dc.description.abstract | [EN] The present work describes the effects on iron homeostasis when copper transport was deregulated inArabidopsis thalianaby overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted onCOPT1(OE)plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently,COPT(OE)seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulatorFITbut activatedbHLH-Ibexpression inCOPT(OE)plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased inCOPT(OE)plants. Thus, iron (III) overloading inCOPT(OE)roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in theCOPT(OE)seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency. | es_ES |
dc.description.sponsorship | This work was supported by grant BIO2017-87828-C2-1-P from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Arabidopsis thaliana | es_ES |
dc.subject | Copper uptake | es_ES |
dc.subject | High affinity copper importer 1 | es_ES |
dc.subject | Iron homeostasis | es_ES |
dc.subject | Metal interactions | es_ES |
dc.subject | Metal mobilization | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2020.01106 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-87828-C2-1-P/ES/REGULACION TRANSCRIPCIONAL Y POSTRANSCRIPCIONAL DE PROCESOS METABOLICOS DEPENDIENTES DE LA DISPONIBILIDAD DE HIERRO Y COBRE EN LEVADURAS Y PLANTAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Perea-García, A.; Andrés-Bordería, A.; Vera Sirera, FJ.; Perez Amador, MA.; Puig, S.; Peñarrubia, L. (2020). Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.01106 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2020.01106 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 32793263 | es_ES |
dc.identifier.pmcid | PMC7390907 | es_ES |
dc.relation.pasarela | S\433442 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., … Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 579(11), 2307-2312. doi:10.1016/j.febslet.2005.03.025 | es_ES |
dc.description.references | Andrés-Bordería, A., Andrés, F., Garcia-Molina, A., Perea-García, A., Domingo, C., Puig, S., & Peñarrubia, L. (2017). Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology, 95(1-2), 17-32. doi:10.1007/s11103-017-0622-8 | es_ES |
dc.description.references | Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x | es_ES |
dc.description.references | Andrés-ColÁs, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles . Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676 | es_ES |
dc.description.references | Andrés-Colás, N., Carrió-Seguí, A., Abdel-Ghany, S. E., Pilon, M., & Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00910 | es_ES |
dc.description.references | Arnholdt-Schmitt, B., Costa, J. H., & de Melo, D. F. (2006). AOX – a functional marker for efficient cell reprogramming under stress? Trends in Plant Science, 11(6), 281-287. doi:10.1016/j.tplants.2006.05.001 | es_ES |
dc.description.references | Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 | es_ES |
dc.description.references | Bang, W. Y., Jeong, I. S., Kim, D. W., Im, C. H., Ji, C., Hwang, S. M., … Bahk, J. D. (2008). Role of Arabidopsis CHL27 Protein for Photosynthesis, Chloroplast Development and Gene Expression Profiling. Plant and Cell Physiology, 49(9), 1350-1363. doi:10.1093/pcp/pcn111 | es_ES |
dc.description.references | Belbin, F. E., Noordally, Z. B., Wetherill, S. J., Atkins, K. A., Franklin, K. A., & Dodd, A. N. (2016). Integration of light and circadian signals that regulate chloroplast transcription by a nuclear‐encoded sigma factor. New Phytologist, 213(2), 727-738. doi:10.1111/nph.14176 | es_ES |
dc.description.references | Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431 | es_ES |
dc.description.references | Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M. A., Fayos, J., Bellés, J. M., … Serrano, R. (2007). The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. doi:10.1111/j.1365-313x.2007.03305.x | es_ES |
dc.description.references | Carmona-Saez, P., Chagoyen, M., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2007). Genome Biology, 8(1), R3. doi:10.1186/gb-2007-8-1-r3 | es_ES |
dc.description.references | Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180 | es_ES |
dc.description.references | Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric Oxide Acts Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response to Iron Deficiency in Arabidopsis. Plant Physiology, 154(2), 810-819. doi:10.1104/pp.110.161109 | es_ES |
dc.description.references | Clifton, R., Millar, A. H., & Whelan, J. (2006). Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(7), 730-741. doi:10.1016/j.bbabio.2006.03.009 | es_ES |
dc.description.references | Colangelo, E. P., & Guerinot, M. L. (2004). The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response. The Plant Cell, 16(12), 3400-3412. doi:10.1105/tpc.104.024315 | es_ES |
dc.description.references | Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation. The Plant Cell, 14(6), 1347-1357. doi:10.1105/tpc.001263 | es_ES |
dc.description.references | Crichton, R. R., & Pierre, J.-L. (2001). BioMetals, 14(2), 99-112. doi:10.1023/a:1016710810701 | es_ES |
dc.description.references | Cui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11(9), 1166-1183. doi:10.1016/j.molp.2018.06.005 | es_ES |
dc.description.references | Cuypers, A., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., … Jaco, V. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168(4), 309-316. doi:10.1016/j.jplph.2010.07.010 | es_ES |
dc.description.references | Silva, E. M., Silva, G. F. F. e, Bidoia, D. B., Silva Azevedo, M., Jesus, F. A., Pino, L. E., … Nogueira, F. T. S. (2017). microRNA159‐targetedSlGAMYBtranscription factors are required for fruit set in tomato. The Plant Journal, 92(1), 95-109. doi:10.1111/tpj.13637 | es_ES |
dc.description.references | Davison, P. A., Schubert, H. L., Reid, J. D., Iorg, C. D., Heroux, A., Hill, C. P., & Hunter, C. N. (2005). Structural and Biochemical Characterization of Gun4 Suggests a Mechanism for Its Role in Chlorophyll Biosynthesis,. Biochemistry, 44(21), 7603-7612. doi:10.1021/bi050240x | es_ES |
dc.description.references | Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207 | es_ES |
dc.description.references | Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088 | es_ES |
dc.description.references | Garcia-Molina, A., Altmann, M., Alkofer, A., Epple, P. M., Dangl, J. L., & Falter-Braun, P. (2017). LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. Journal of Experimental Botany, 68(5), 1185-1197. doi:10.1093/jxb/erw498 | es_ES |
dc.description.references | Grillet, L., Ouerdane, L., Flis, P., Hoang, M. T. T., Isaure, M.-P., Lobinski, R., … Mari, S. (2014). Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants. Journal of Biological Chemistry, 289(5), 2515-2525. doi:10.1074/jbc.m113.514828 | es_ES |
dc.description.references | Grillet, L., Lan, P., Li, W., Mokkapati, G., & Schmidt, W. (2018). IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants, 4(11), 953-963. doi:10.1038/s41477-018-0266-y | es_ES |
dc.description.references | Gulec, S., & Collins, J. F. (2014). Molecular Mediators Governing Iron-Copper Interactions. Annual Review of Nutrition, 34(1), 95-116. doi:10.1146/annurev-nutr-071812-161215 | es_ES |
dc.description.references | Hindt, M. N., Akmakjian, G. Z., Pivarski, K. L., Punshon, T., Baxter, I., Salt, D. E., & Guerinot, M. L. (2017). BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics, 9(7), 876-890. doi:10.1039/c7mt00152e | es_ES |
dc.description.references | Hirayama, T., Lei, G. J., Yamaji, N., Nakagawa, N., & Ma, J. F. (2018). The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in Arabidopsis. Plant and Cell Physiology, 59(9), 1739-1752. doi:10.1093/pcp/pcy145 | es_ES |
dc.description.references | Kastoori Ramamurthy, R., Xiang, Q., Hsieh, E.-J., Liu, K., Zhang, C., & Waters, B. M. (2018). New aspects of iron–copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics, 10(12), 1824-1840. doi:10.1039/c8mt00287h | es_ES |
dc.description.references | Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R. N., Nakanishi, H., & Nishizawa, N. K. (2013). Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications, 4(1). doi:10.1038/ncomms3792 | es_ES |
dc.description.references | Kobayashi, T. (2019). Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant and Cell Physiology, 60(7), 1440-1446. doi:10.1093/pcp/pcz038 | es_ES |
dc.description.references | Kosman, D. J. (2018). The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics, 10(3), 370-377. doi:10.1039/c8mt00015h | es_ES |
dc.description.references | Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency inArabidopsisRoots . The Plant Cell, 22(7), 2219-2236. doi:10.1105/tpc.110.074096 | es_ES |
dc.description.references | López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadı́a, A., Rivas, J. D. L., & Abadı́a, J. (2000). Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use. Plant Physiology, 124(2), 885-898. doi:10.1104/pp.124.2.885 | es_ES |
dc.description.references | López-Torrejón, G., Jiménez-Vicente, E., Buesa, J. M., Hernandez, J. A., Verma, H. K., & Rubio, L. M. (2016). Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nature Communications, 7(1). doi:10.1038/ncomms11426 | es_ES |
dc.description.references | Macadlo, L. A., Ibrahim, I. M., & Puthiyaveetil, S. (2019). Sigma factor 1 in chloroplast gene transcription and photosynthetic light acclimation. Journal of Experimental Botany, 71(3), 1029-1038. doi:10.1093/jxb/erz464 | es_ES |
dc.description.references | Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., & Masuda, T. (2004). Gene Expression Profiling of the Tetrapyrrole Metabolic Pathway in Arabidopsis with a Mini-Array System . Plant Physiology, 135(4), 2379-2391. doi:10.1104/pp.104.042408 | es_ES |
dc.description.references | Mittler, R., Darash-Yahana, M., Sohn, Y. S., Bai, F., Song, L., Cabantchik, I. Z., … Nechushtai, R. (2019). NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxidants & Redox Signaling, 30(8), 1083-1095. doi:10.1089/ars.2018.7502 | es_ES |
dc.description.references | Moseley, J., Quinn, J., Eriksson, M., & Merchant, S. (2000). The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. The EMBO Journal, 19(10), 2139-2151. doi:10.1093/emboj/19.10.2139 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Nechushtai, R., Conlan, A. R., Harir, Y., Song, L., Yogev, O., Eisenberg-Domovich, Y., … Mittler, R. (2012). Characterization of Arabidopsis NEET Reveals an Ancient Role for NEET Proteins in Iron Metabolism. The Plant Cell, 24(5), 2139-2154. doi:10.1105/tpc.112.097634 | es_ES |
dc.description.references | Nevitt, T., Öhrvik, H., & Thiele, D. J. (2012). Charting the travels of copper in eukaryotes from yeast to mammals. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1580-1593. doi:10.1016/j.bbamcr.2012.02.011 | es_ES |
dc.description.references | Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., … Pascual-Montano, A. (2009). GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research, 37(Web Server), W317-W322. doi:10.1093/nar/gkp416 | es_ES |
dc.description.references | Nouet, C., Motte, P., & Hanikenne, M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 16(7), 395-404. doi:10.1016/j.tplants.2011.03.005 | es_ES |
dc.description.references | Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. (1965). Deep Sea Research and Oceanographic Abstracts, 12(4), 619. doi:10.1016/0011-7471(65)90662-5 | es_ES |
dc.description.references | Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255 | es_ES |
dc.description.references | Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling . Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407 | es_ES |
dc.description.references | Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474 | es_ES |
dc.description.references | PETIT, J.-M., BRIAT, J.-F., & LOBRÉAUX, S. (2001). Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 359(3), 575. doi:10.1042/0264-6021:3590575 | es_ES |
dc.description.references | Pfaffl, M. W. (2002). Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36e-36. doi:10.1093/nar/30.9.e36 | es_ES |
dc.description.references | PUIG, S., ANDRÉS-COLÁS, N., GARCÍA-MOLINA, A., & PEÑARRUBIA, L. (2007). Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environment, 30(3), 271-290. doi:10.1111/j.1365-3040.2007.01642.x | es_ES |
dc.description.references | Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917 | es_ES |
dc.description.references | Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & V. O’Halloran, T. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805 | es_ES |
dc.description.references | Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084 | es_ES |
dc.description.references | Ren, F., Logeman, B. L., Zhang, X., Liu, Y., Thiele, D. J., & Yuan, P. (2019). X-ray structures of the high-affinity copper transporter Ctr1. Nature Communications, 10(1). doi:10.1038/s41467-019-09376-7 | es_ES |
dc.description.references | Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014 | es_ES |
dc.description.references | Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397(6721), 694-697. doi:10.1038/17800 | es_ES |
dc.description.references | RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020 | es_ES |
dc.description.references | Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112 | es_ES |
dc.description.references | Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200 | es_ES |
dc.description.references | Sanz, A., Pike, S., Khan, M. A., Carrió-Seguí, À., Mendoza-Cózatl, D. G., Peñarrubia, L., & Gassmann, W. (2018). Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma, 256(1), 161-170. doi:10.1007/s00709-018-1286-1 | es_ES |
dc.description.references | Selinski, J., Scheibe, R., Day, D. A., & Whelan, J. (2018). Alternative Oxidase Is Positive for Plant Performance. Trends in Plant Science, 23(7), 588-597. doi:10.1016/j.tplants.2018.03.012 | es_ES |
dc.description.references | Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T. A. (2014). Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors . Plant Physiology, 167(1), 273-286. doi:10.1104/pp.114.250837 | es_ES |
dc.description.references | Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., … Stacey, G. (2007). The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. Plant Physiology, 146(2), 323-324. doi:10.1104/pp.107.108183 | es_ES |
dc.description.references | Tanaka, R., & Tanaka, A. (2007). Tetrapyrrole Biosynthesis in Higher Plants. Annual Review of Plant Biology, 58(1), 321-346. doi:10.1146/annurev.arplant.57.032905.105448 | es_ES |
dc.description.references | Tissot, N., Robe, K., Gao, F., Grant‐Grant, S., Boucherez, J., Bellegarde, F., … Dubos, C. (2019). Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 223(3), 1433-1446. doi:10.1111/nph.15753 | es_ES |
dc.description.references | Tsukagoshi, H., Busch, W., & Benfey, P. N. (2010). Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell, 143(4), 606-616. doi:10.1016/j.cell.2010.10.020 | es_ES |
dc.description.references | Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 | es_ES |
dc.description.references | Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589-599. doi:10.1046/j.1365-313x.2002.01381.x | es_ES |
dc.description.references | Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., & Curie, C. (2002). IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. The Plant Cell, 14(6), 1223-1233. doi:10.1105/tpc.001388 | es_ES |
dc.description.references | Vigani, G., Maffi, D., & Zocchi, G. (2009). Iron availability affects the function of mitochondria in cucumber roots. New Phytologist, 182(1), 127-136. doi:10.1111/j.1469-8137.2008.02747.x | es_ES |
dc.description.references | Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., … Ling, H.-Q. (2013). Requirement and Functional Redundancy of Ib Subgroup bHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana. Molecular Plant, 6(2), 503-513. doi:10.1093/mp/sss089 | es_ES |
dc.description.references | Waters, B. M., & Armbrust, L. C. (2013). Optimal copper supply is required for normal plant iron deficiency responses. Plant Signaling & Behavior, 8(12), e26611. doi:10.4161/psb.26611 | es_ES |
dc.description.references | Waters, B. M., McInturf, S. A., & Stein, R. J. (2012). Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. Journal of Experimental Botany, 63(16), 5903-5918. doi:10.1093/jxb/ers239 | es_ES |
dc.description.references | Wofford, J. D., Bolaji, N., Dziuba, N., Outten, F. W., & Lindahl, P. A. (2019). Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation. Journal of Biological Chemistry, 294(1), 50-62. doi:10.1074/jbc.ra118.005233 | es_ES |
dc.description.references | Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282(22), 16369-16378. doi:10.1074/jbc.m700138200 | es_ES |
dc.description.references | Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis . The Plant Cell, 21(1), 347-361. doi:10.1105/tpc.108.060137 | es_ES |
dc.description.references | Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, 5(9), 1090. doi:10.1039/c3mt00086a | es_ES |
dc.description.references | Yuan, Y., Wu, H., Wang, N., Li, J., Zhao, W., Du, J., … Ling, H.-Q. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research, 18(3), 385-397. doi:10.1038/cr.2008.26 | es_ES |
dc.description.references | Zhang, H., & Krämer, U. (2018). Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01641 | es_ES |