- -

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perea-García, Ana es_ES
dc.contributor.author Andrés-Bordería, Amparo es_ES
dc.contributor.author Vera Sirera, Francisco José es_ES
dc.contributor.author PEREZ AMADOR, MIGUEL ANGEL es_ES
dc.contributor.author Puig, Sergi es_ES
dc.contributor.author Peñarrubia, Lola es_ES
dc.date.accessioned 2021-07-01T03:32:48Z
dc.date.available 2021-07-01T03:32:48Z
dc.date.issued 2020-07-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168611
dc.description.abstract [EN] The present work describes the effects on iron homeostasis when copper transport was deregulated inArabidopsis thalianaby overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted onCOPT1(OE)plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently,COPT(OE)seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulatorFITbut activatedbHLH-Ibexpression inCOPT(OE)plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased inCOPT(OE)plants. Thus, iron (III) overloading inCOPT(OE)roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in theCOPT(OE)seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency. es_ES
dc.description.sponsorship This work was supported by grant BIO2017-87828-C2-1-P from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject Copper uptake es_ES
dc.subject High affinity copper importer 1 es_ES
dc.subject Iron homeostasis es_ES
dc.subject Metal interactions es_ES
dc.subject Metal mobilization es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2020.01106 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-87828-C2-1-P/ES/REGULACION TRANSCRIPCIONAL Y POSTRANSCRIPCIONAL DE PROCESOS METABOLICOS DEPENDIENTES DE LA DISPONIBILIDAD DE HIERRO Y COBRE EN LEVADURAS Y PLANTAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Perea-García, A.; Andrés-Bordería, A.; Vera Sirera, FJ.; Perez Amador, MA.; Puig, S.; Peñarrubia, L. (2020). Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.01106 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2020.01106 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 32793263 es_ES
dc.identifier.pmcid PMC7390907 es_ES
dc.relation.pasarela S\433442 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., … Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 579(11), 2307-2312. doi:10.1016/j.febslet.2005.03.025 es_ES
dc.description.references Andrés-Bordería, A., Andrés, F., Garcia-Molina, A., Perea-García, A., Domingo, C., Puig, S., & Peñarrubia, L. (2017). Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology, 95(1-2), 17-32. doi:10.1007/s11103-017-0622-8 es_ES
dc.description.references Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.x es_ES
dc.description.references Andrés-ColÁs, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles    . Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676 es_ES
dc.description.references Andrés-Colás, N., Carrió-Seguí, A., Abdel-Ghany, S. E., Pilon, M., & Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00910 es_ES
dc.description.references Arnholdt-Schmitt, B., Costa, J. H., & de Melo, D. F. (2006). AOX – a functional marker for efficient cell reprogramming under stress? Trends in Plant Science, 11(6), 281-287. doi:10.1016/j.tplants.2006.05.001 es_ES
dc.description.references Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 es_ES
dc.description.references Bang, W. Y., Jeong, I. S., Kim, D. W., Im, C. H., Ji, C., Hwang, S. M., … Bahk, J. D. (2008). Role of Arabidopsis CHL27 Protein for Photosynthesis, Chloroplast Development and Gene Expression Profiling. Plant and Cell Physiology, 49(9), 1350-1363. doi:10.1093/pcp/pcn111 es_ES
dc.description.references Belbin, F. E., Noordally, Z. B., Wetherill, S. J., Atkins, K. A., Franklin, K. A., & Dodd, A. N. (2016). Integration of light and circadian signals that regulate chloroplast transcription by a nuclear‐encoded sigma factor. New Phytologist, 213(2), 727-738. doi:10.1111/nph.14176 es_ES
dc.description.references Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431 es_ES
dc.description.references Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M. A., Fayos, J., Bellés, J. M., … Serrano, R. (2007). The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. doi:10.1111/j.1365-313x.2007.03305.x es_ES
dc.description.references Carmona-Saez, P., Chagoyen, M., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2007). Genome Biology, 8(1), R3. doi:10.1186/gb-2007-8-1-r3 es_ES
dc.description.references Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180 es_ES
dc.description.references Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric Oxide Acts Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response to Iron Deficiency in Arabidopsis. Plant Physiology, 154(2), 810-819. doi:10.1104/pp.110.161109 es_ES
dc.description.references Clifton, R., Millar, A. H., & Whelan, J. (2006). Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(7), 730-741. doi:10.1016/j.bbabio.2006.03.009 es_ES
dc.description.references Colangelo, E. P., & Guerinot, M. L. (2004). The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response. The Plant Cell, 16(12), 3400-3412. doi:10.1105/tpc.104.024315 es_ES
dc.description.references Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 Metal Transporter Is Controlled by Metals at the Levels of Transcript and Protein Accumulation. The Plant Cell, 14(6), 1347-1357. doi:10.1105/tpc.001263 es_ES
dc.description.references Crichton, R. R., & Pierre, J.-L. (2001). BioMetals, 14(2), 99-112. doi:10.1023/a:1016710810701 es_ES
dc.description.references Cui, Y., Chen, C.-L., Cui, M., Zhou, W.-J., Wu, H.-L., & Ling, H.-Q. (2018). Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. Molecular Plant, 11(9), 1166-1183. doi:10.1016/j.molp.2018.06.005 es_ES
dc.description.references Cuypers, A., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., … Jaco, V. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168(4), 309-316. doi:10.1016/j.jplph.2010.07.010 es_ES
dc.description.references Silva, E. M., Silva, G. F. F. e, Bidoia, D. B., Silva Azevedo, M., Jesus, F. A., Pino, L. E., … Nogueira, F. T. S. (2017). microRNA159‐targetedSlGAMYBtranscription factors are required for fruit set in tomato. The Plant Journal, 92(1), 95-109. doi:10.1111/tpj.13637 es_ES
dc.description.references Davison, P. A., Schubert, H. L., Reid, J. D., Iorg, C. D., Heroux, A., Hill, C. P., & Hunter, C. N. (2005). Structural and Biochemical Characterization of Gun4 Suggests a Mechanism for Its Role in Chlorophyll Biosynthesis,. Biochemistry, 44(21), 7603-7612. doi:10.1021/bi050240x es_ES
dc.description.references Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207 es_ES
dc.description.references Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088 es_ES
dc.description.references Garcia-Molina, A., Altmann, M., Alkofer, A., Epple, P. M., Dangl, J. L., & Falter-Braun, P. (2017). LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. Journal of Experimental Botany, 68(5), 1185-1197. doi:10.1093/jxb/erw498 es_ES
dc.description.references Grillet, L., Ouerdane, L., Flis, P., Hoang, M. T. T., Isaure, M.-P., Lobinski, R., … Mari, S. (2014). Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants. Journal of Biological Chemistry, 289(5), 2515-2525. doi:10.1074/jbc.m113.514828 es_ES
dc.description.references Grillet, L., Lan, P., Li, W., Mokkapati, G., & Schmidt, W. (2018). IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants, 4(11), 953-963. doi:10.1038/s41477-018-0266-y es_ES
dc.description.references Gulec, S., & Collins, J. F. (2014). Molecular Mediators Governing Iron-Copper Interactions. Annual Review of Nutrition, 34(1), 95-116. doi:10.1146/annurev-nutr-071812-161215 es_ES
dc.description.references Hindt, M. N., Akmakjian, G. Z., Pivarski, K. L., Punshon, T., Baxter, I., Salt, D. E., & Guerinot, M. L. (2017). BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics, 9(7), 876-890. doi:10.1039/c7mt00152e es_ES
dc.description.references Hirayama, T., Lei, G. J., Yamaji, N., Nakagawa, N., & Ma, J. F. (2018). The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in Arabidopsis. Plant and Cell Physiology, 59(9), 1739-1752. doi:10.1093/pcp/pcy145 es_ES
dc.description.references Kastoori Ramamurthy, R., Xiang, Q., Hsieh, E.-J., Liu, K., Zhang, C., & Waters, B. M. (2018). New aspects of iron–copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics, 10(12), 1824-1840. doi:10.1039/c8mt00287h es_ES
dc.description.references Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R. N., Nakanishi, H., & Nishizawa, N. K. (2013). Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications, 4(1). doi:10.1038/ncomms3792 es_ES
dc.description.references Kobayashi, T. (2019). Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant and Cell Physiology, 60(7), 1440-1446. doi:10.1093/pcp/pcz038 es_ES
dc.description.references Kosman, D. J. (2018). The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics, 10(3), 370-377. doi:10.1039/c8mt00015h es_ES
dc.description.references Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency inArabidopsisRoots  . The Plant Cell, 22(7), 2219-2236. doi:10.1105/tpc.110.074096 es_ES
dc.description.references López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadı́a, A., Rivas, J. D. L., & Abadı́a, J. (2000). Responses of Sugar Beet Roots to Iron Deficiency. Changes in Carbon Assimilation and Oxygen Use. Plant Physiology, 124(2), 885-898. doi:10.1104/pp.124.2.885 es_ES
dc.description.references López-Torrejón, G., Jiménez-Vicente, E., Buesa, J. M., Hernandez, J. A., Verma, H. K., & Rubio, L. M. (2016). Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nature Communications, 7(1). doi:10.1038/ncomms11426 es_ES
dc.description.references Macadlo, L. A., Ibrahim, I. M., & Puthiyaveetil, S. (2019). Sigma factor 1 in chloroplast gene transcription and photosynthetic light acclimation. Journal of Experimental Botany, 71(3), 1029-1038. doi:10.1093/jxb/erz464 es_ES
dc.description.references Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., & Masuda, T. (2004). Gene Expression Profiling of the Tetrapyrrole Metabolic Pathway in Arabidopsis with a Mini-Array System  . Plant Physiology, 135(4), 2379-2391. doi:10.1104/pp.104.042408 es_ES
dc.description.references Mittler, R., Darash-Yahana, M., Sohn, Y. S., Bai, F., Song, L., Cabantchik, I. Z., … Nechushtai, R. (2019). NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer. Antioxidants & Redox Signaling, 30(8), 1083-1095. doi:10.1089/ars.2018.7502 es_ES
dc.description.references Moseley, J., Quinn, J., Eriksson, M., & Merchant, S. (2000). The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. The EMBO Journal, 19(10), 2139-2151. doi:10.1093/emboj/19.10.2139 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Nechushtai, R., Conlan, A. R., Harir, Y., Song, L., Yogev, O., Eisenberg-Domovich, Y., … Mittler, R. (2012). Characterization of Arabidopsis NEET Reveals an Ancient Role for NEET Proteins in Iron Metabolism. The Plant Cell, 24(5), 2139-2154. doi:10.1105/tpc.112.097634 es_ES
dc.description.references Nevitt, T., Öhrvik, H., & Thiele, D. J. (2012). Charting the travels of copper in eukaryotes from yeast to mammals. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(9), 1580-1593. doi:10.1016/j.bbamcr.2012.02.011 es_ES
dc.description.references Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., … Pascual-Montano, A. (2009). GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research, 37(Web Server), W317-W322. doi:10.1093/nar/gkp416 es_ES
dc.description.references Nouet, C., Motte, P., & Hanikenne, M. (2011). Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 16(7), 395-404. doi:10.1016/j.tplants.2011.03.005 es_ES
dc.description.references Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. (1965). Deep Sea Research and Oceanographic Abstracts, 12(4), 619. doi:10.1016/0011-7471(65)90662-5 es_ES
dc.description.references Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255 es_ES
dc.description.references Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling    . Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407 es_ES
dc.description.references Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474 es_ES
dc.description.references PETIT, J.-M., BRIAT, J.-F., & LOBRÉAUX, S. (2001). Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 359(3), 575. doi:10.1042/0264-6021:3590575 es_ES
dc.description.references Pfaffl, M. W. (2002). Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36e-36. doi:10.1093/nar/30.9.e36 es_ES
dc.description.references PUIG, S., ANDRÉS-COLÁS, N., GARCÍA-MOLINA, A., & PEÑARRUBIA, L. (2007). Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environment, 30(3), 271-290. doi:10.1111/j.1365-3040.2007.01642.x es_ES
dc.description.references Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917 es_ES
dc.description.references Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & V. O’Halloran, T. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805 es_ES
dc.description.references Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084 es_ES
dc.description.references Ren, F., Logeman, B. L., Zhang, X., Liu, Y., Thiele, D. J., & Yuan, P. (2019). X-ray structures of the high-affinity copper transporter Ctr1. Nature Communications, 10(1). doi:10.1038/s41467-019-09376-7 es_ES
dc.description.references Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014 es_ES
dc.description.references Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397(6721), 694-697. doi:10.1038/17800 es_ES
dc.description.references RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020 es_ES
dc.description.references Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112 es_ES
dc.description.references Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200 es_ES
dc.description.references Sanz, A., Pike, S., Khan, M. A., Carrió-Seguí, À., Mendoza-Cózatl, D. G., Peñarrubia, L., & Gassmann, W. (2018). Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma, 256(1), 161-170. doi:10.1007/s00709-018-1286-1 es_ES
dc.description.references Selinski, J., Scheibe, R., Day, D. A., & Whelan, J. (2018). Alternative Oxidase Is Positive for Plant Performance. Trends in Plant Science, 23(7), 588-597. doi:10.1016/j.tplants.2018.03.012 es_ES
dc.description.references Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T. A. (2014). Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors  . Plant Physiology, 167(1), 273-286. doi:10.1104/pp.114.250837 es_ES
dc.description.references Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., … Stacey, G. (2007). The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. Plant Physiology, 146(2), 323-324. doi:10.1104/pp.107.108183 es_ES
dc.description.references Tanaka, R., & Tanaka, A. (2007). Tetrapyrrole Biosynthesis in Higher Plants. Annual Review of Plant Biology, 58(1), 321-346. doi:10.1146/annurev.arplant.57.032905.105448 es_ES
dc.description.references Tissot, N., Robe, K., Gao, F., Grant‐Grant, S., Boucherez, J., Bellegarde, F., … Dubos, C. (2019). Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytologist, 223(3), 1433-1446. doi:10.1111/nph.15753 es_ES
dc.description.references Tsukagoshi, H., Busch, W., & Benfey, P. N. (2010). Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell, 143(4), 606-616. doi:10.1016/j.cell.2010.10.020 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589-599. doi:10.1046/j.1365-313x.2002.01381.x es_ES
dc.description.references Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., & Curie, C. (2002). IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. The Plant Cell, 14(6), 1223-1233. doi:10.1105/tpc.001388 es_ES
dc.description.references Vigani, G., Maffi, D., & Zocchi, G. (2009). Iron availability affects the function of mitochondria in cucumber roots. New Phytologist, 182(1), 127-136. doi:10.1111/j.1469-8137.2008.02747.x es_ES
dc.description.references Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., … Ling, H.-Q. (2013). Requirement and Functional Redundancy of Ib Subgroup bHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana. Molecular Plant, 6(2), 503-513. doi:10.1093/mp/sss089 es_ES
dc.description.references Waters, B. M., & Armbrust, L. C. (2013). Optimal copper supply is required for normal plant iron deficiency responses. Plant Signaling & Behavior, 8(12), e26611. doi:10.4161/psb.26611 es_ES
dc.description.references Waters, B. M., McInturf, S. A., & Stein, R. J. (2012). Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. Journal of Experimental Botany, 63(16), 5903-5918. doi:10.1093/jxb/ers239 es_ES
dc.description.references Wofford, J. D., Bolaji, N., Dziuba, N., Outten, F. W., & Lindahl, P. A. (2019). Evidence that a respiratory shield in Escherichia coli protects a low-molecular-mass FeII pool from O2-dependent oxidation. Journal of Biological Chemistry, 294(1), 50-62. doi:10.1074/jbc.ra118.005233 es_ES
dc.description.references Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. Journal of Biological Chemistry, 282(22), 16369-16378. doi:10.1074/jbc.m700138200 es_ES
dc.description.references Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis  . The Plant Cell, 21(1), 347-361. doi:10.1105/tpc.108.060137 es_ES
dc.description.references Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, 5(9), 1090. doi:10.1039/c3mt00086a es_ES
dc.description.references Yuan, Y., Wu, H., Wang, N., Li, J., Zhao, W., Du, J., … Ling, H.-Q. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research, 18(3), 385-397. doi:10.1038/cr.2008.26 es_ES
dc.description.references Zhang, H., & Krämer, U. (2018). Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01641 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem