- -

A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Signol, François es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.contributor.author Fuster Bagetto, Alejandro es_ES
dc.contributor.author Pollan, Marina es_ES
dc.contributor.author Pérez-Gómez, Beatriz es_ES
dc.contributor.author Salas-Trejo, Dolores es_ES
dc.contributor.author Casals, Maria es_ES
dc.contributor.author Martínez, Inmaculada es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.date.accessioned 2021-07-01T03:32:53Z
dc.date.available 2021-07-01T03:32:53Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168615
dc.description.abstract [EN] Background and Objective: Breast cancer is the most frequent cancer in women. The Spanish healthcare network established population-based screening programs in all Autonomous Communities, where mammograms of asymptomatic women are taken with early diagnosis purposes. Breast density assessed from digital mammograms is a biomarker known to be related to a higher risk to develop breast cancer. It is thus crucial to provide a reliable method to measure breast density from mammograms. Furthermore the complete automation of this segmentation process is becoming fundamental as the amount of mammograms increases every day. Important challenges are related with the differences in images from different devices and the lack of an objective gold standard. This paper presents a fully automated framework based on deep learning to estimate the breast density. The framework covers breast detection, pectoral muscle exclusion, and fibroglandular tissue segmentation. Methods: A multi-center study, composed of 1785 women whose "for presentation" mammograms were segmented by two experienced radiologists. A total of 4992 of the 6680 mammograms were used as training corpus and the remaining (1688) formed the test corpus. This paper presents a histogram normalization step that smoothed the difference between acquisition, a regression architecture that learned segmentation parameters as intrinsic image features and a loss function based on the DICE score. Results: The results obtained indicate that the level of concordance (DICE score) reached by the two radiologists (0.77) was also achieved by the automated framework when it was compared to the closest breast segmentation from the radiologists. For the acquired with the highest quality device, the DICE score per acquisition device reached 0.84, while the concordance between radiologists was 0.76. Conclusions: An automatic breast density estimator based on deep learning exhibits similar performance when compared with two experienced radiologists. It suggests that this system could be used to support radiologists to ease its work. es_ES
dc.description.sponsorship This work was partially funded by Generalitat Valenciana through I+D IVACE (Valencian Institute of Business Competitiviness) and GVA (European Regional Development Fund) supports under the project IMAMCN/2019/1, and by Carlos III Institute of Health under the project DTS15/00080. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Breast density es_ES
dc.subject Entirely convolutional neural network (ECNN) es_ES
dc.subject Deep learning es_ES
dc.subject Dense tissue segmentation es_ES
dc.subject Mammography es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2020.105668 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCN%2F2019%2F1/ES/Plan de Actividades de carácter no económico 2019/EMOSPACES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DTS15%2F00080/ES/DM-Scan: herramienta de lectura de densidad mamográfica como fenotipo marcador de riesgo de cáncer de mama/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Perez-Benito, FJ.; Signol, F.; Perez-Cortes, J.; Fuster Bagetto, A.; Pollan, M.; Pérez-Gómez, B.; Salas-Trejo, D.... (2020). A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation. Computer Methods and Programs in Biomedicine. 195:123-132. https://doi.org/10.1016/j.cmpb.2020.105668 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2020.105668 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 132 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 195 es_ES
dc.relation.pasarela S\417287 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.description.references Kuhl, C. K. (2015). The Changing World of Breast Cancer. Investigative Radiology, 50(9), 615-628. doi:10.1097/rli.0000000000000166 es_ES
dc.description.references Boyd, N. F., Rommens, J. M., Vogt, K., Lee, V., Hopper, J. L., Yaffe, M. J., & Paterson, A. D. (2005). Mammographic breast density as an intermediate phenotype for breast cancer. The Lancet Oncology, 6(10), 798-808. doi:10.1016/s1470-2045(05)70390-9 es_ES
dc.description.references Assi, V., Warwick, J., Cuzick, J., & Duffy, S. W. (2011). Clinical and epidemiological issues in mammographic density. Nature Reviews Clinical Oncology, 9(1), 33-40. doi:10.1038/nrclinonc.2011.173 es_ES
dc.description.references Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., & Zwiggelaar, R. (2008). A Novel Breast Tissue Density Classification Methodology. IEEE Transactions on Information Technology in Biomedicine, 12(1), 55-65. doi:10.1109/titb.2007.903514 es_ES
dc.description.references Pérez-Benito, F. J., Signol, F., Pérez-Cortés, J.-C., Pollán, M., Pérez-Gómez, B., Salas-Trejo, D., … LLobet, R. (2019). Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Computer Methods and Programs in Biomedicine, 177, 123-132. doi:10.1016/j.cmpb.2019.05.022 es_ES
dc.description.references Ciatto, S., Houssami, N., Apruzzese, A., Bassetti, E., Brancato, B., Carozzi, F., … Scorsolini, A. (2005). Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. The Breast, 14(4), 269-275. doi:10.1016/j.breast.2004.12.004 es_ES
dc.description.references Skaane, P. (2009). Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: Updated review. Acta Radiologica, 50(1), 3-14. doi:10.1080/02841850802563269 es_ES
dc.description.references Van der Waal, D., den Heeten, G. J., Pijnappel, R. M., Schuur, K. H., Timmers, J. M. H., Verbeek, A. L. M., & Broeders, M. J. M. (2015). Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting. PLOS ONE, 10(9), e0136667. doi:10.1371/journal.pone.0136667 es_ES
dc.description.references Kim, S. H., Lee, E. H., Jun, J. K., Kim, Y. M., Chang, Y.-W., … Lee, J. H. (2019). Interpretive Performance and Inter-Observer Agreement on Digital Mammography Test Sets. Korean Journal of Radiology, 20(2), 218. doi:10.3348/kjr.2018.0193 es_ES
dc.description.references Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044 es_ES
dc.description.references LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 es_ES
dc.description.references Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., … Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82-97. doi:10.1109/msp.2012.2205597 es_ES
dc.description.references Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3-11. doi:10.1016/j.patrec.2018.02.010 es_ES
dc.description.references Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168-174. doi:10.1038/nature12346 es_ES
dc.description.references Lee, K., Turner, N., Macrina, T., Wu, J., Lu, R., & Seung, H. S. (2019). Convolutional nets for reconstructing neural circuits from brain images acquired by serial section electron microscopy. Current Opinion in Neurobiology, 55, 188-198. doi:10.1016/j.conb.2019.04.001 es_ES
dc.description.references Leung, M. K. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the tissue-regulated splicing code. Bioinformatics, 30(12), i121-i129. doi:10.1093/bioinformatics/btu277 es_ES
dc.description.references Zhou, J., Park, C. Y., Theesfeld, C. L., Wong, A. K., Yuan, Y., Scheckel, C., … Troyanskaya, O. G. (2019). Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nature Genetics, 51(6), 973-980. doi:10.1038/s41588-019-0420-0 es_ES
dc.description.references Kallenberg, M., Petersen, K., Nielsen, M., Ng, A. Y., Diao, P., Igel, C., … Lillholm, M. (2016). Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring. IEEE Transactions on Medical Imaging, 35(5), 1322-1331. doi:10.1109/tmi.2016.2532122 es_ES
dc.description.references Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 es_ES
dc.description.references P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, arXiv:1312.6229 (2013). es_ES
dc.description.references Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. doi:10.2307/1932409 es_ES
dc.description.references Pollán, M., Llobet, R., Miranda-García, J., Antón, J., Casals, M., Martínez, I., … Salas-Trejo, D. (2013). Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-242 es_ES
dc.description.references Llobet, R., Pollán, M., Antón, J., Miranda-García, J., Casals, M., Martínez, I., … Pérez-Cortés, J.-C. (2014). Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Computer Methods and Programs in Biomedicine, 116(2), 105-115. doi:10.1016/j.cmpb.2014.01.021 es_ES
dc.description.references He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., & Chao, Y. (2017). The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 70, 25-43. doi:10.1016/j.patcog.2017.04.018 es_ES
dc.description.references Wu, K., Otoo, E., & Suzuki, K. (2008). Optimizing two-pass connected-component labeling algorithms. Pattern Analysis and Applications, 12(2), 117-135. doi:10.1007/s10044-008-0109-y es_ES
dc.description.references Shen, R., Yan, K., Xiao, F., Chang, J., Jiang, C., & Zhou, K. (2018). Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection. Journal of Digital Imaging, 31(5), 680-691. doi:10.1007/s10278-018-0068-9 es_ES
dc.description.references Yin, K., Yan, S., Song, C., & Zheng, B. (2018). A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. International Journal of Computer Assisted Radiology and Surgery, 14(2), 237-248. doi:10.1007/s11548-018-1867-7 es_ES
dc.description.references James, J. . (2004). The current status of digital mammography. Clinical Radiology, 59(1), 1-10. doi:10.1016/j.crad.2003.08.011 es_ES
dc.description.references Sáez, C., Robles, M., & García-Gómez, J. M. (2016). Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research, 26(1), 312-336. doi:10.1177/0962280214545122 es_ES
dc.description.references Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. doi:10.1016/j.patrec.2009.09.011 es_ES
dc.description.references Lee, J., & Nishikawa, R. M. (2018). Automated mammographic breast density estimation using a fully convolutional network. Medical Physics, 45(3), 1178-1190. doi:10.1002/mp.12763 es_ES
dc.description.references D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 (2014). es_ES
dc.description.references Lehman, C. D., Yala, A., Schuster, T., Dontchos, B., Bahl, M., Swanson, K., & Barzilay, R. (2019). Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Radiology, 290(1), 52-58. doi:10.1148/radiol.2018180694 es_ES
dc.description.references Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. doi:10.1109/tpami.2013.50 es_ES
dc.description.references Wu, G., Kim, M., Wang, Q., Munsell, B. C., & Shen, D. (2016). Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning. IEEE Transactions on Biomedical Engineering, 63(7), 1505-1516. doi:10.1109/tbme.2015.2496253 es_ES
dc.description.references T.P. Matthews, S. Singh, B. Mombourquette, J. Su, M.P. Shah, S. Pedemonte, A. Long, D. Maffit, J. Gurney, R.M. Hoil, et al., A multi-site study of a breast density deep learning model for full-field digital mammography and digital breast tomosynthesis exams, arXiv:2001.08383 (2020). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem