- -

Analyzing the Nearly Optimal Solutions in a Multi-Objective Optimization Approach for the Multivariable Nonlinear Identification of a PEM Fuel Cell Cooling System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analyzing the Nearly Optimal Solutions in a Multi-Objective Optimization Approach for the Multivariable Nonlinear Identification of a PEM Fuel Cell Cooling System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pajares-Ferrando, Alberto es_ES
dc.contributor.author Blasco, Xavier es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.contributor.author Salcedo-Romero-de-Ávila, José-Vicente es_ES
dc.date.accessioned 2021-07-03T03:31:10Z
dc.date.available 2021-07-03T03:31:10Z
dc.date.issued 2020 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168721
dc.description.abstract [EN] In this work, the parametric identification of a cooling system in a PEM (proton exchange membrane) fuel cell is carried out. This system is multivariable and nonlinear. In this type of system there are different objectives and the unmodeled dynamics cause conflicting objectives (prediction errors in each output). For this reason, resolution is proposed using a multi-objective optimization approach. Nearly optimal alternatives can exist in any optimization problem. Among them, the nearly optimal solutions that are significantly different (that we call nearly optimal solutions nondominated in their neighborhood) are potentially useful solutions. In identification problems, two situations arise for consideration: 1) aggregation in the design objectives (when considering the prediction error throughout the identification test). When an aggregation occurs in the design objectives, interesting non-neighboring (significantly different) multimodal and nearly optimal alternatives appear. These alternatives have different trade-offs in the aggregated objectives; 2) new objectives in decision making appear. Some models can, with similar performance in the design objectives, obtain a significant improvement in new objectives not included in the optimization phase. A typical case of additional objectives are the validation objectives. In these situations, nearly optimal solutions nondominated in their neighborhood play a key role. These alternatives allow the designer to make the final decision with more valuable information. Therefore, this work highlights, as a novelty, the relevance of considering nearly optimal models nondominated in their neighborhood in problems of parametric identification of multivariable nonlinear systems and shows an application in a complex problem. es_ES
dc.description.sponsorship This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades, Spain, under Grant RTI2018-096904-B-I00, and in part by the Generalitat Valenciana Regional Government under Project AICO/2019/055. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multi-objective es_ES
dc.subject Nearly optimal es_ES
dc.subject Multivariable nonlinear system identification es_ES
dc.subject PEM fuel cell es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Analyzing the Nearly Optimal Solutions in a Multi-Objective Optimization Approach for the Multivariable Nonlinear Identification of a PEM Fuel Cell Cooling System es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2020.3003741 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F055/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Salcedo-Romero-De-Ávila, J. (2020). Analyzing the Nearly Optimal Solutions in a Multi-Objective Optimization Approach for the Multivariable Nonlinear Identification of a PEM Fuel Cell Cooling System. IEEE Access. 8:114361-114377. https://doi.org/10.1109/ACCESS.2020.3003741 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2020.3003741 es_ES
dc.description.upvformatpinicio 114361 es_ES
dc.description.upvformatpfin 114377 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\415114 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem