- -

Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory

Show full item record

Wang, S.; Li, X.; Ruiz García, R. (2020). Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory. IEEE Transactions on Computers. 69(4):563-576. https://doi.org/10.1109/TC.2019.2956505

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168797

Files in this item

Item Metadata

Title: Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory
Author: Wang, Shuang Li, Xiaoping Ruiz García, Rubén
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
[EN] In this article, we consider the problem of selecting appropriate heterogeneous servers in cloud centers for stochastically arriving requests in order to obtain an optimal tradeoff between the expected response time ...[+]
Subjects: Servers , Cloud computing , Time factors , Power demand , Analytical models , Performance analysis , Queueing analysis , Heterogeneous servers , Power consumption , Response time , Markov process
Copyrigths: Reserva de todos los derechos
IEEE Transactions on Computers. (issn: 0018-9340 )
DOI: 10.1109/TC.2019.2956505
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/TC.2019.2956505
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/
Description: © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This work is supported by the National Key Research and Development Program of China Grant No. 2017YFB1400801, the National Natural Science Foundation of China Grant Nos. 61572127, 61872077, 61832004 and Collaborative ...[+]
Type: Artículo



This item appears in the following Collection(s)

Show full item record