- -

Engineering human-in-the-loop interactions in cyber-physical systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering human-in-the-loop interactions in cyber-physical systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil, Miriam es_ES
dc.contributor.author Albert Albiol, Manuela es_ES
dc.contributor.author Fons Cors, Josep es_ES
dc.contributor.author Pelechano Ferragud, Vicente es_ES
dc.date.accessioned 2021-07-08T03:31:21Z
dc.date.available 2021-07-08T03:31:21Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0950-5849 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168942
dc.description.abstract [EN] Context: Cyber-Physical Systems (CPSs) are gradually and widely introducing autonomous capabilities into everything. However, human participation is required to accomplish tasks that are better performed with humans (often called human-in-the-loop). In this way, human-in-the-loop solutions have the potential to handle complex tasks in unstructured environments, by combining the cognitive skills of humans with autonomous systems behaviors. Objective: The objective of this paper is to provide appropriate techniques and methods to help designers analyze and design human-in-the-loop solutions. These solutions require interactions that engage the human, provide natural and understandable collaboration, and avoid disturbing the human in order to improve human experience. Method: We have analyzed several works that identified different requirements and critical factors that are relevant to the design of human-in-the-loop solutions. Based on these works, we have defined a set of design principles that are used to build our proposal. Fast-prototyping techniques have been applied to simulate the designed human-in-the-loop solutions and validate them. Results: We have identified the technological challenges of designing human-in-the-loop CPSs and have provided a method that helps designers to identify and specify how the human and the system should work together, focusing on the control strategies and interactions required. Conclusions: The use of our approach facilitates the design of human-in-the-loop solutions. Our method is practical at earlier stages of the software life cycle since it allows domain experts to focus on the problem and not on the solution. es_ES
dc.description.sponsorship This work has been developed with the financial support of the Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2017-84094-R and AICO/2019/009, and co-financed with ERDF. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information and Software Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Human-in-the-loop design es_ES
dc.subject Human-System interactions es_ES
dc.subject Autonomous cyber-physical systems es_ES
dc.subject User attention es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Engineering human-in-the-loop interactions in cyber-physical systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.infsof.2020.106349 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84094-R/ES/DISEÑO DE SISTEMAS AUTO-ADAPTATIVOS INVOLUCRANDO AL HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F009/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación en Métodos de Producción de Software - Centre d'Investigació en Mètodes de Producció de Software es_ES
dc.description.bibliographicCitation Gil, M.; Albert Albiol, M.; Fons Cors, J.; Pelechano Ferragud, V. (2020). Engineering human-in-the-loop interactions in cyber-physical systems. Information and Software Technology. 126:1-21. https://doi.org/10.1016/j.infsof.2020.106349 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.infsof.2020.106349 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.relation.pasarela S\430289 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Jirgl, M., Bradac, Z., & Fiedler, P. (2018). Human-in-the-Loop Issue in Context of the Cyber-Physical Systems. IFAC-PapersOnLine, 51(6), 225-230. doi:10.1016/j.ifacol.2018.07.158 es_ES
dc.description.references Moore, A., O’Reilly, T., Nielsen, P. D., & Fall, K. (2016). Four Thought Leaders on Where the Industry Is Headed. IEEE Software, 33(1), 36-39. doi:10.1109/ms.2016.1 es_ES
dc.description.references Seshia, S. A., Hu, S., Li, W., & Zhu, Q. (2017). Design Automation of Cyber-Physical Systems: Challenges, Advances, and Opportunities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(9), 1421-1434. doi:10.1109/tcad.2016.2633961 es_ES
dc.description.references N. Jaynes, Timeline: The future of driverless cars, from Audi to Volvo, 2016. es_ES
dc.description.references Digital transformation of industries. automotive industry, 2016. es_ES
dc.description.references Farooq, U., & Grudin, J. (2016). Human-computer integration. Interactions, 23(6), 26-32. doi:10.1145/3001896 es_ES
dc.description.references Sowe, S. K., Simmon, E., Zettsu, K., de Vaulx, F., & Bojanova, I. (2016). Cyber-Physical-Human Systems: Putting People in the Loop. IT Professional, 18(1), 10-13. doi:10.1109/mitp.2016.14 es_ES
dc.description.references Janssen, C. P., Donker, S. F., Brumby, D. P., & Kun, A. L. (2019). History and future of human-automation interaction. International Journal of Human-Computer Studies, 131, 99-107. doi:10.1016/j.ijhcs.2019.05.006 es_ES
dc.description.references SHERIDAN, T. B. (2000). Function allocation: algorithm, alchemy or apostasy? International Journal of Human-Computer Studies, 52(2), 203-216. doi:10.1006/ijhc.1999.0285 es_ES
dc.description.references HOLLNAGEL, E., & BYE, A. (2000). Principles for modelling function allocation. International Journal of Human-Computer Studies, 52(2), 253-265. doi:10.1006/ijhc.1999.0288 es_ES
dc.description.references Bindewald, J. M., Miller, M. E., & Peterson, G. L. (2014). A function-to-task process model for adaptive automation system design. International Journal of Human-Computer Studies, 72(12), 822-834. doi:10.1016/j.ijhcs.2014.07.004 es_ES
dc.description.references WRIGHT, P., DEARDEN, A., & FIELDS, B. (2000). Function allocation: a perspective from studies of work practice. International Journal of Human-Computer Studies, 52(2), 335-355. doi:10.1006/ijhc.1999.0292 es_ES
dc.description.references Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using Formal Verification to Evaluate Human-Automation Interaction: A Review. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3), 488-503. doi:10.1109/tsmca.2012.2210406 es_ES
dc.description.references John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques. ACM Transactions on Computer-Human Interaction, 3(4), 320-351. doi:10.1145/235833.236054 es_ES
dc.description.references Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role of trust in automation reliance. International Journal of Human-Computer Studies, 58(6), 697-718. doi:10.1016/s1071-5819(03)00038-7 es_ES
dc.description.references Russell, D. M., Maglio, P. P., Dordick, R., & Neti, C. (2003). Dealing with ghosts: Managing the user experience of autonomic computing. IBM Systems Journal, 42(1), 177-188. doi:10.1147/sj.421.0177 es_ES
dc.description.references Miller, C. A., & Parasuraman, R. (2007). Designing for Flexible Interaction Between Humans and Automation: Delegation Interfaces for Supervisory Control. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(1), 57-75. doi:10.1518/001872007779598037 es_ES
dc.description.references Gil, M., Giner, P., & Pelechano, V. (2011). Personalization for unobtrusive service interaction. Personal and Ubiquitous Computing, 16(5), 543-561. doi:10.1007/s00779-011-0414-0 es_ES
dc.description.references Rajaonah, B., Tricot, N., Anceaux, F., & Millot, P. (2008). The role of intervening variables in driver–ACC cooperation. International Journal of Human-Computer Studies, 66(3), 185-197. doi:10.1016/j.ijhcs.2007.09.002 es_ES
dc.description.references Van der Heiden, R. M. A., Janssen, C. P., Donker, S. F., Hardeman, L. E. S., Mans, K., & Kenemans, J. L. (2018). Susceptibility to audio signals during autonomous driving. PLOS ONE, 13(8), e0201963. doi:10.1371/journal.pone.0201963 es_ES
dc.description.references Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003). A Unifying Reference Framework for multi-target user interfaces. Interacting with Computers, 15(3), 289-308. doi:10.1016/s0953-5438(03)00010-9 es_ES
dc.description.references Schirner, G., Erdogmus, D., Chowdhury, K., & Padir, T. (2013). The Future of Human-in-the-Loop Cyber-Physical Systems. Computer, 46(1), 36-45. doi:10.1109/mc.2013.31 es_ES
dc.description.references Nunes, D. S., Zhang, P., & Sa Silva, J. (2015). A Survey on Human-in-the-Loop Applications Towards an Internet of All. IEEE Communications Surveys & Tutorials, 17(2), 944-965. doi:10.1109/comst.2015.2398816 es_ES
dc.description.references J. Cámara, D. Garlan, G. Moreno, B. Schmerl, Evaluating Trade-Offs of Human Involvement in Self-Adaptive Systems, Managing Trade-Offs in Adaptable Software Architectures. pp. 155–180. es_ES
dc.description.references Feng, L., Wiltsche, C., Humphrey, L., & Topcu, U. (2016). Synthesis of Human-in-the-Loop Control Protocols for Autonomous Systems. IEEE Transactions on Automation Science and Engineering, 13(2), 450-462. doi:10.1109/tase.2016.2530623 es_ES
dc.description.references Leigh, S., Agrawal, H., & Maes, P. (2018). Robotic Symbionts: Interweaving Human and Machine Actions. IEEE Pervasive Computing, 17(2), 34-43. doi:10.1109/mprv.2018.022511241 es_ES
dc.description.references Krugh, M., & Mears, L. (2018). A complementary Cyber-Human Systems framework for Industry 4.0 Cyber-Physical Systems. Manufacturing Letters, 15, 89-92. doi:10.1016/j.mfglet.2018.01.003 es_ES
dc.description.references Emmanouilidis, C., Pistofidis, P., Bertoncelj, L., Katsouros, V., Fournaris, A., Koulamas, C., & Ruiz-Carcel, C. (2019). Enabling the human in the loop: Linked data and knowledge in industrial cyber-physical systems. Annual Reviews in Control, 47, 249-265. doi:10.1016/j.arcontrol.2019.03.004 es_ES
dc.description.references ISO 9241-210:2019(en), Ergonomics of human-system interaction — Part 210: Human-centred design for interactive systems. es_ES
dc.description.references D. Miller, W. Ju, Joint cognition in automated driving: combining human and machine intelligence to address novel problems, 2015. es_ES
dc.description.references Gil, M., Albert, M., Fons, J., & Pelechano, V. (2019). Designing human-in-the-loop autonomous Cyber-Physical Systems. International Journal of Human-Computer Studies, 130, 21-39. doi:10.1016/j.ijhcs.2019.04.006 es_ES
dc.description.references Nahavandi, S. (2017). Trusted Autonomy Between Humans and Robots: Toward Human-on-the-Loop in Robotics and Autonomous Systems. IEEE Systems, Man, and Cybernetics Magazine, 3(1), 10-17. doi:10.1109/msmc.2016.2623867 es_ES
dc.description.references Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing, 5(1), 4-7. doi:10.1007/s007790170019 es_ES
dc.description.references Horvitz, E., Kadie, C., Paek, T., & Hovel, D. (2003). Models of attention in computing and communication. Communications of the ACM, 46(3), 52-59. doi:10.1145/636772.636798 es_ES
dc.description.references Ju, W., & Leifer, L. (2008). The Design of Implicit Interactions: Making Interactive Systems Less Obnoxious. Design Issues, 24(3), 72-84. doi:10.1162/desi.2008.24.3.72 es_ES
dc.description.references Bernsen, N. O. (1994). Foundations of multimodal representations: a taxonomy of representational modalities. Interacting with Computers, 6(4), 347-371. doi:10.1016/0953-5438(94)90008-6 es_ES
dc.description.references Obrenovic, Z., Abascal, J., & Starcevic, D. (2007). Universal accessibility as a multimodal design issue. Communications of the ACM, 50(5), 83-88. doi:10.1145/1230819.1241668 es_ES
dc.description.references Reeves, L. M., Martin, J.-C., McTear, M., Raman, T., Stanney, K. M., Su, H., … Kraal, B. (2004). Guidelines for multimodal user interface design. Communications of the ACM, 47(1), 57. doi:10.1145/962081.962106 es_ES
dc.description.references F. Beruscha, K. Augsburg, D. Manstetten, R.B.G. Schwieberdingen, Haptic warning signals at the steering wheel: a literature survey regarding lane departure warning systems (short paper), 2011. es_ES
dc.description.references Chun, J., Lee, I., Park, G., Seo, J., Choi, S., & Han, S. H. (2013). Efficacy of haptic blind spot warnings applied through a steering wheel or a seatbelt. Transportation Research Part F: Traffic Psychology and Behaviour, 21, 231-241. doi:10.1016/j.trf.2013.09.014 es_ES
dc.description.references Trivedi, M. M., & Cheng, S. Y. (2007). Holistic Sensing and Active Displays for Intelligent Driver Support Systems. Computer, 40(5), 60-68. doi:10.1109/mc.2007.170 es_ES
dc.description.references N.T.T. Program, https://software.nasa.gov/software/arc-15150-1a. es_ES
dc.description.references Kitchenham, B., Pickard, L., & Pfleeger, S. L. (1995). Case studies for method and tool evaluation. IEEE Software, 12(4), 52-62. doi:10.1109/52.391832 es_ES
dc.description.references ISO - ISO/IEC 25062:2006 - Software engineering—Software product Quality Requirements and Evaluation (SQuaRE)—Common Industry Format (CIF) for usability test reports. es_ES
dc.description.references Jamieson, S. (2004). Likert scales: how to (ab)use them. Medical Education, 38(12), 1217-1218. doi:10.1111/j.1365-2929.2004.02012.x es_ES
dc.description.references D. Kieras, Using the Keystroke-level model to estimate execution times (2003). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem