- -

Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter

Mostrar el registro completo del ítem

González-Barba, JÁ.; Hurtado Oliver, LF.; Pla Santamaría, F. (2020). Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter. Information Processing & Management. 57(4):1-15. https://doi.org/10.1016/j.ipm.2020.102262

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168953

Ficheros en el ítem

Metadatos del ítem

Título: Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter
Autor: González-Barba, José Ángel Hurtado Oliver, Lluis Felip Pla Santamaría, Ferran
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Human communication using natural language, specially in social media, is influenced by the use of figurative language like irony. Recently, several workshops are intended to explore the task of irony detection in ...[+]
Palabras clave: Irony detection , Twitter , Deep learning , Transformer encoders
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Information Processing & Management. (issn: 0306-4573 )
DOI: 10.1016/j.ipm.2020.102262
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ipm.2020.102262
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/
Agradecimientos:
This work has been partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades and FEDER founds under project AMIC (TIN2017-85854-C4-2-R) and the GiSPRO project (PROMETEU/2018/176). Work of Jose-Angel ...[+]
Tipo: Artículo

References

Farías, D. I. H., Patti, V., & Rosso, P. (2016). Irony Detection in Twitter. ACM Transactions on Internet Technology, 16(3), 1-24. doi:10.1145/2930663

Greene, R., Cushman, S., Cavanagh, C., Ramazani, J., & Rouzer, P. (Eds.). (2012). The Princeton Encyclopedia of Poetry and Poetics. doi:10.1515/9781400841424

Van Hee, C., Lefever, E., & Hoste, V. (2018). We Usually Don’t Like Going to the Dentist: Using Common Sense to Detect Irony on Twitter. Computational Linguistics, 44(4), 793-832. doi:10.1162/coli_a_00337 [+]
Farías, D. I. H., Patti, V., & Rosso, P. (2016). Irony Detection in Twitter. ACM Transactions on Internet Technology, 16(3), 1-24. doi:10.1145/2930663

Greene, R., Cushman, S., Cavanagh, C., Ramazani, J., & Rouzer, P. (Eds.). (2012). The Princeton Encyclopedia of Poetry and Poetics. doi:10.1515/9781400841424

Van Hee, C., Lefever, E., & Hoste, V. (2018). We Usually Don’t Like Going to the Dentist: Using Common Sense to Detect Irony on Twitter. Computational Linguistics, 44(4), 793-832. doi:10.1162/coli_a_00337

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735

Joshi, A., Bhattacharyya, P., & Carman, M. J. (2017). Automatic Sarcasm Detection. ACM Computing Surveys, 50(5), 1-22. doi:10.1145/3124420

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations.

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Muecke, D. C. (1978). Irony markers. Poetics, 7(4), 363-375. doi:10.1016/0304-422x(78)90011-6

Potamias, R. A., Siolas, G., & Stafylopatis, A. (2019). A transformer-based approach to irony and sarcasm detection. arXiv:1911.10401.

Rosso, P., Rangel, F., Farías, I. H., Cagnina, L., Zaghouani, W., & Charfi, A. (2018). A survey on author profiling, deception, and irony detection for the Arabic language. Language and Linguistics Compass, 12(4), e12275. doi:10.1111/lnc3.12275

Sulis, E., Irazú Hernández Farías, D., Rosso, P., Patti, V., & Ruffo, G. (2016). Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not. Knowledge-Based Systems, 108, 132-143. doi:10.1016/j.knosys.2016.05.035

Wilson, D., & Sperber, D. (1992). On verbal irony. Lingua, 87(1-2), 53-76. doi:10.1016/0024-3841(92)90025-e

Yus, F. (2016). Propositional attitude, affective attitude and irony comprehension. Pragmatics & Cognition, 23(1), 92-116. doi:10.1075/pc.23.1.05yus

Zhang, S., Zhang, X., Chan, J., & Rosso, P. (2019). Irony detection via sentiment-based transfer learning. Information Processing & Management, 56(5), 1633-1644. doi:10.1016/j.ipm.2019.04.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem