Mostrar el registro sencillo del ítem
dc.contributor.author | Martín Furones, Ángel Esteban | es_ES |
dc.contributor.author | Luján García Muñoz, Raquel | es_ES |
dc.contributor.author | Anquela Julián, Ana Belén | es_ES |
dc.date.accessioned | 2021-07-09T03:31:37Z | |
dc.date.available | 2021-07-09T03:31:37Z | |
dc.date.issued | 2020-07-20 | es_ES |
dc.identifier.issn | 1080-5370 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169019 | |
dc.description.abstract | [EN] Global Navigation Satellite System (GNSS) interferometric reflectometry, also known as the GNSS-IR, uses data from geodetic-quality GNSS antennas to extract information about the environment surrounding the antenna. Soil moisture moni-toring is one of the most important applications of the GNSS-IR technique. This manuscript presents the main ideas and implementation decisions needed to write the Python code for software tools that transform RINEX format observation and navigation files into an appropriate format for GNSS-IR (which includes the SNR observations and the azimuth and elevation of the satellites) and to determine the reflection height and the adjusted phase and amplitude values of the interferometric wave for each individual satellite track. The main goal of the manuscript is to share the software with the scientific com-munity to introduce new users to the GNSS-IR technique. | es_ES |
dc.description.sponsorship | The authors want to thank the staff of the Cajamar Center of Experiences, and especially Carlos Baixauli, for their support and collaboration in the Paiporta experiment. The authors also want to thank Alfred Leick and Steve Hilla for their valuable comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | GPS Solutions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | GNSS-IR reflectometry | es_ES |
dc.subject | Python software | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject | Signal-to-noise ratio (SNR) | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Python software tools for GNSS interferometric reflectometry (GNSS-IR) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10291-020-01010-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Martín Furones, ÁE.; Luján García Muñoz, R.; Anquela Julián, AB. (2020). Python software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solutions. 24(4):1-7. https://doi.org/10.1007/s10291-020-01010-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10291-020-01010-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\415999 | es_ES |
dc.contributor.funder | Fundación Cajamar | es_ES |
dc.description.references | Chen Q, Won D, Akos DM, Small EE (2016) Vegetation using GPS interferometric reflectometry: experimental results with a horizontal polarized antenna. IEEE J Select Top Appl Earth Obs Rem Sens 9(10):4771–4780. https://doi.org/10.1109/JSTARS.2016.2565687 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM, Zavorotny VU (2014) Effects of near-surface soil moisture on GPS SNR data: development and retrieval algorithm for soil moisture. IEEE T Geosci Rem Sens 52(1):537–543. https://doi.org/10.1109/TGRS.2013.2242332 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM, Zavorotny UZ (2015) Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data. IEEE T Geosci Rem Sens 53(5):2755–2764. https://doi.org/10.1109/TGRS.2014.2364513 | es_ES |
dc.description.references | Chew CC, Small EE, Larson KM (2016) An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS Solut 20(3):525–537. https://doi.org/10.1007/s10291-015-0462-4 | es_ES |
dc.description.references | Gurtner W, Estey L (2015) RINEX: the receiver independent exchange format version 3.03. ftp://igs.org/pub/data/format/rinex303.pdf | es_ES |
dc.description.references | Larson KM, Small EE, Gutmann ED, Bilich AL, Axelrad A, Braun JJ (2008a) Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut 12(3):173–177. https://doi.org/10.1007/s10291-007-0076-6 | es_ES |
dc.description.references | Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008b) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35:L24405. https://doi.org/10.1029/2008GL036013 | es_ES |
dc.description.references | Larson KM, Gutmann E, Zavorotny VU, Braun J, Williams M, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36:L17502. https://doi.org/10.1029/2009GL039430 | es_ES |
dc.description.references | Larson KM, Braun JJ, Small EE, Zavorotny VU (2010) GPS multipath and its relation to near-surface soil moisture content. IEEE J Selec Top Appl Earth Obs Rem Sens 3(1):91–99. https://doi.org/10.1109/JSTARS.2009.2033612 | es_ES |
dc.description.references | Larson KM, Nievinski FG (2013) GPS snow sensing: results from the EarthScope plate boundary observatory. GPS Solut 17(1):41–52. https://doi.org/10.1007/s10291-012-0259-7 | es_ES |
dc.description.references | Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken, p 840 | es_ES |
dc.description.references | Martín A, Ibañez S, Baixauli C, Blanc S, Anquela AB (2020) Multi-constellation interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-24-3573-2020 | es_ES |
dc.description.references | Nievinski GG, Larson KM (2014) An open source GPS multipath simulator in Matlab/Octave. GPS Solut 18:473–481. https://doi.org/10.1007/s10291-014-0370-z | es_ES |
dc.description.references | Nischan T (2016) GFZRNX—RINEX GNSS data conversion and manipulation toolbox (Version 1.05). GFZ Data Serv. https://doi.org/10.5880/GFZ.1.1.2016.002 | es_ES |
dc.description.references | Roesler C, Larson KM (2018) Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. https://doi.org/10.1007/s10291-018-0744-8 | es_ES |
dc.description.references | Roussel N, Ramilien G, Frappart F, Darrozes J, Gay A, Biancale R, Striebig N, Hanquiez V, Bertin X, Allain A (2015) Sea level monitoring and sea estimate using a single geodetic receiver. Remote Sens Environ 171:261–277. https://doi.org/10.1016/j.rse.2015.10.011 | es_ES |
dc.description.references | Roussel N, Frappart F, Ramillien G, Darroes J, Baup F, Lestarquit L, Ha MC (2016) Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2º to 70º. IEEE J Selec Top Appl Earth Obs Rem Sens 9(10):4781–4794. https://doi.org/10.1109/JSTARS.2016.2537847 | es_ES |
dc.description.references | Sanz J, Juan JM, Hernández-Pajares M (2013) GNSS data processing. Volume I: fundamentals and algorithms. European Space Agency Communications, 223 pp | es_ES |
dc.description.references | Small EE, Larson KM, Chew CC, Dong J, Ochsner TE (2016) Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects. IEEE J Selec Top Appl Earth Obs Rem Sens 9(10):4759–4770. https://doi.org/10.1109/JSTARS.2015.2504527 | es_ES |
dc.description.references | Vey S, Güntner A, Wickert J, Blume T, Ramatschi M (2016) Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa. GPS Solut 20:641–654. https://doi.org/10.1007/s10291-015-0474-0 | es_ES |
dc.description.references | Wan W, Larson KM, Small EE, Chew CC, Braun JJ (2015) Using geodetic GPS receivers to measure vegetation water content. GPS Solut 19:237–248. https://doi.org/10.1007/s10291-014-0383-7 | es_ES |
dc.description.references | Zhang S, Roussel N, Boniface K, Ha MC, Frappart F, Darrozes J, Baup F, Calvet JC (2017) Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol Earth Syst Sci 21:4767–4784. https://doi.org/10.5194/hess-21-4767-2017 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |