- -

Dual Indicators to Analyse AI Benchmarks: Difficulty, Discrimination, Ability and Generality

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dual Indicators to Analyse AI Benchmarks: Difficulty, Discrimination, Ability and Generality

Show full item record

Martínez-Plumed, F.; Hernández-Orallo, J. (2020). Dual Indicators to Analyse AI Benchmarks: Difficulty, Discrimination, Ability and Generality. IEEE Transactions on Games. 12(2):121-131. https://doi.org/10.1109/TG.2018.2883773

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169021

Files in this item

Item Metadata

Title: Dual Indicators to Analyse AI Benchmarks: Difficulty, Discrimination, Ability and Generality
Author: Martínez-Plumed, Fernando Hernández-Orallo, José
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] With the purpose of better analyzing the result of artificial intelligence (AI) benchmarks, we present two indicators on the side of the AI problems, difficulty and discrimination, and two indicators on the side of ...[+]
Subjects: Artificial intelligence , Games , Benchmark testing , Task analysis , Adaptation models , Guidelines , Indexes , Artificial intelligence (AI) benchmarks , AI evaluation , Generality , Item response theory (ITR)
Copyrigths: Reserva de todos los derechos
Source:
IEEE Transactions on Games. (issn: 2475-1502 )
DOI: 10.1109/TG.2018.2883773
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Publisher version: https://doi.org/10.1109/TG.2018.2883773
Project ID:
INCIBE/INCIBEI-2015-27345
...[+]
INCIBE/INCIBEI-2015-27345
UPV/SP20180210
MECD/PRX17/00467
GVA/BEST/2017/045
FLI/RFP2-152
EC/CT-EX2018D335821-101
UPV/PAID-06-18
AFOSR/FA9550-17-1-0287
info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/
GVA/PROMETEOII/2015/013
[-]
Thanks:
This work was supported by the U.S. Air Force Office of Scientific Research under Award FA9550-17-1-0287; in part by the EU (FEDER) and the Spanish MINECO under Grant TIN 2015-69175-C4-1-R; and in part by the Generalitat ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record