- -

Migration cost optimization for service provider legacy network migration to software-defined IPv6 network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Migration cost optimization for service provider legacy network migration to software-defined IPv6 network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dawadi, Babu R. es_ES
dc.contributor.author Rawat, Danda B. es_ES
dc.contributor.author Joshi, Shashidhar R. es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Keitsch, Martina M. es_ES
dc.date.accessioned 2021-07-09T03:31:46Z
dc.date.available 2021-07-09T03:31:46Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1055-7148 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169023
dc.description This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P, Keitsch, MM. Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. Int J Network Mgmt. 2021; 31:e2145, which has been published in final form at https://doi.org/10.1002/nem.2145. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] This paper studies a problem for seamless migration of legacy networks of Internet service providers to a software-defined networking (SDN)-based architecture along with the transition to the full adoption of the Internet protocol version 6 (IPv6) connectivity. Migration of currently running legacy IPv4 networks into such new approaches requires either upgrades or replacement of existing networking devices and technologies that are actively operating. The joint migration to SDN and IPv6 network is considered to be vital in terms of migration cost optimization, skilled human resource management, and other critical factors. In this work, we first present the approaches of SDN and IPv6 migration in service providers' networks. Then, we present the common concerns of IPv6 and SDN migration with joint transition strategies so that the cost associated with joint migration is minimized to lower than that of the individual migration. For the incremental adoption of software-defined IPv6 (SoDIP6) network with optimum migration cost, a greedy algorithm is proposed based on optimal path and the customer priority. Simulation and empirical analysis show that a unified transition planning to SoDIP6 network results in lower migration cost. es_ES
dc.description.sponsorship U.S. National Science Foundation (NSF), Grant/Award Number: CNS 1650831 and HRD 1828811; ERASMUS+ KA107; Nepal Academy of Science and Technology (NAST); Norwegian University of Science and Technology; University Grant Commission (UGC), Nepal, Grant/Award Number: FRG/74_75/Engg-1 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal of Network Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Migration cost optimization for service provider legacy network migration to software-defined IPv6 network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nem.2145 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Erasmus+/KA107/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1828811/US/HBCU-RISE: Security Engineering for Resilient Mobile Cyber-Physical Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1650831/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UGC//FRG%2F74_75%2FEngg-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P.; Keitsch, MM. (2021). Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. International Journal of Network Management. 31(4):1-24. https://doi.org/10.1002/nem.2145 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/nem.2145 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\430019 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Nepal Academy of Science and Technology es_ES
dc.contributor.funder Norges Teknisk-Naturvitenskapelige Universitet es_ES
dc.description.references APNIC.IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed April 22 2020. es_ES
dc.description.references Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020. es_ES
dc.description.references Rawat, D. B., & Reddy, S. R. (2017). Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 325-346. doi:10.1109/comst.2016.2618874 es_ES
dc.description.references Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center networks with software defined networking: A survey. Journal of Network and Computer Applications, 94, 33-49. doi:10.1016/j.jnca.2017.07.004 es_ES
dc.description.references Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., … McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011 es_ES
dc.description.references Gumaste, A., Sharma, V., Kakadia, D., Yates, J., Clauberg, A., & Voltolini, M. (2017). SDN Use Cases for Service Provider Networks: Part 2. IEEE Communications Magazine, 55(4), 62-63. doi:10.1109/mcom.2017.7901478 es_ES
dc.description.references Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636 es_ES
dc.description.references Shah, J. L., Bhat, H. F., & Khan, A. I. (2019). Towards IPv6 Migration and Challenges. International Journal of Technology Diffusion, 10(2), 83-96. doi:10.4018/ijtd.2019040105 es_ES
dc.description.references Rojas, E., Doriguzzi-Corin, R., Tamurejo, S., Beato, A., Schwabe, A., Phemius, K., & Guerrero, C. (2018). Are We Ready to Drive Software-Defined Networks? A Comprehensive Survey on Management Tools and Techniques. ACM Computing Surveys, 51(2), 1-35. doi:10.1145/3165290 es_ES
dc.description.references Contreras, L. M., Doolan, P., Lønsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016 es_ES
dc.description.references Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259-3306. doi:10.1109/comst.2018.2837161 es_ES
dc.description.references Audi Marc Amjad A.The Advancement in Information and Communication Technologies (ICT) and Economic Development: A Panel Analysis. MPRA.https://mpra.ub.uni-muenchen.de/93476/. Published 2019. Accessed November 29 2019. es_ES
dc.description.references Main, A., Zakaria, N. A., & Yusof, R. (2015). Organisation Readiness Factors Towards IPv6 Migration: Expert Review. Procedia - Social and Behavioral Sciences, 195, 1882-1889. doi:10.1016/j.sbspro.2015.06.427 es_ES
dc.description.references Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Baral, D. S. (2019). Affordable Broadband with Software Defined IPv6 Network for Developing Rural Communities. Applied System Innovation, 3(1), 4. doi:10.3390/asi3010004 es_ES
dc.description.references Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027 es_ES
dc.description.references Dell, P. (2018). On the dual-stacking transition to IPv6: A forlorn hope? Telecommunications Policy, 42(7), 575-581. doi:10.1016/j.telpol.2018.04.005 es_ES
dc.description.references GilliganRE NordmarkE GilliganRE et alBasic Transition Mechanisms for IPv6 Hosts and Routers.2000. es_ES
dc.description.references Cui, Y., Dong, J., Wu, P., Wu, J., Metz, C., Lee, Y. L., & Durand, A. (2013). Tunnel-Based IPv6 Transition. IEEE Internet Computing, 17(2), 62-68. doi:10.1109/mic.2012.63 es_ES
dc.description.references BlanchetM ParentF.IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP).2010. es_ES
dc.description.references HuitemaC.Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs) RFC 4380.2006. es_ES
dc.description.references CarpenterB MooreK.Connection of IPv6 domains via IPv4 clouds.2001. es_ES
dc.description.references JungC CarpenterBE.Transmission of IPv6 over IPv4 Domains without Explicit Tunnels.1999. es_ES
dc.description.references CuiY WuJ LeeY WuP VautrinO.Public IPv4‐over‐IPv6 access Network2013. es_ES
dc.description.references CuiY SunQ LeeYL TsouT FarrerI BoucadairM.Lightweight 4over6: an extension to the dual‐stack lite Architecture2015. es_ES
dc.description.references TemplinF GleesonT TalwarM ThalerD.Intra‐Site Automatic Tunnel Addressing Protocol (ISATAP) RFC 5214.2008. es_ES
dc.description.references DurandA DromsR WoodyattJ LeeY.RFC 6333: Dual‐Stack Lite Broadband Deployments Following IPv4 Exhaustion. IETF Aug.2011. es_ES
dc.description.references BaoC DecW LiX TroanO MatsushimaS MurakamiT.Mapping of Address and Port with Encapsulation (MAP‐E). IETF Internet Draft.2015. es_ES
dc.description.references TownsleyW TroanO.IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)‐‐Protocol Specification.2010. es_ES
dc.description.references ChenM ChenG JiangS LeeY DespresR PennoR.IPv4 Residual Deployment via IPv6‐A Stateless Solution (4rd).2015. es_ES
dc.description.references WuP CuiY XuM et alPET: Prefixing encapsulation and translation for IPv4‐IPv6 coexistence. In: 2010IEEE Global Telecommunications Conference GLOBECOM2010. 2010:1–5. es_ES
dc.description.references LiX BaoC ChenM ZhangH WuJ.IVI translation design and deployment for the IPv4/IPv6 coexistence and transition.IETF RFC6219 Internet Eng Task Force Fremont CA.2011. es_ES
dc.description.references Bagnulo, M., Garcia-Martinez, A., & Van Beijnum, I. (2012). The NAT64/DNS64 tool suite for IPv6 transition. IEEE Communications Magazine, 50(7), 177-183. doi:10.1109/mcom.2012.6231295 es_ES
dc.description.references BagnuloM SullivanA MatthewsP VanBeijnumI.DNS64: DNS extensions for network address translation from IPv6 clients to IPv4 servers RFC 6147.2011. es_ES
dc.description.references LiuD DengH.NAT46 Considerations.2010. es_ES
dc.description.references MawatariM KawashimaM ByrneC.464XLAT: Combination of stateful and stateless translation. IETF Internet‐Draft.2013. es_ES
dc.description.references PerreaultS YamagataI MiyakawaS NakagawaA.Common Requirements for Carrier‐Grade NATs (CGNs) RFC6888.2013. es_ES
dc.description.references YamaguchiJ ShirasakiY NakagawaA AshidaH.Nat444 addressing models. Req Comments Draft Internet Eng Task Force.2012. es_ES
dc.description.references ChenG CaoZ XieC BinetD.NAT64 Deployment Options and Experience RFC 7269.2014. es_ES
dc.description.references LiX BaoC DecW TroanO MatsushimaS MurakamiT.Mapping of Address and Port using Translation (MAP‐T) RFC 7599. IETF Internet Draft.2013. es_ES
dc.description.references Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200 es_ES
dc.description.references Hernandez-Valencia, E., Izzo, S., & Polonsky, B. (2015). How will NFV/SDN transform service provider opex? IEEE Network, 29(3), 60-67. doi:10.1109/mnet.2015.7113227 es_ES
dc.description.references BogineniK et alThe Open Networking Lab (ON.Lab). Introducing ONOS—a SDN network operating system for Service Providers.White Pap.2014;1:14.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf es_ES
dc.description.references TR‐506 O ONF TR‐506.SDN Migration Considerations and Use Cases.2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf es_ES
dc.description.references RisdiantoAC LingTC TsaiP YangC KimJ.Leveraging open‐source software for federated multisite SDN‐cloud playground. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft). ;2016:423‐427.https://doi.org/10.1109/NETSOFT.2016.7502479 es_ES
dc.description.references GalizaH SchwarzM BezerraJ IbarraJ.Moving an ip network to sdn: a global use case deployment experience at amlight. In:Anais Do WPEIF2016Workshop de Pesquisa Experimental Da Internet Do Futuro: 15. es_ES
dc.description.references LevinD CaniniM SchmidS SchaffertF Feldmann A.Panopticon: Reaping the Benefits of Incremental {SDN} Deployment in Enterprise Networks. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). ;2014:333–345. es_ES
dc.description.references Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. ACM SIGCOMM Computer Communication Review, 45(4), 43-56. doi:10.1145/2829988.2787497 es_ES
dc.description.references Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., & Hu, S. (2019). A Survey of Deployment Solutions and Optimization Strategies for Hybrid SDN Networks. IEEE Communications Surveys & Tutorials, 21(2), 1483-1507. doi:10.1109/comst.2018.2871061 es_ES
dc.description.references Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762 es_ES
dc.description.references Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics, 9(9), 1454. doi:10.3390/electronics9091454 es_ES
dc.description.references HongDK MaY BanerjeeS MaoZM.Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN Research. 2016:1‐7. es_ES
dc.description.references Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015 es_ES
dc.description.references Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029 es_ES
dc.description.references Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., … Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676 es_ES
dc.description.references Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532 es_ES
dc.description.references Goransson, P., & Black, C. (2014). SDN in the Data Center. Software Defined Networks, 145-167. doi:10.1016/b978-0-12-416675-2.00007-3 es_ES
dc.description.references AT & T.Introducing the “User Defined Network Cloud”.https://about.att.com/newsroom/introducing_the_user_defined_network_cloud.html. Published 2014. Accessed August 12 2018. es_ES
dc.description.references CsikorL TokaL SzalayM PongráczG PezarosDP RétváriG.HARMLESS: Cost‐effective transitioning to SDN for small enterprises. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. ; 2018:1–9. es_ES
dc.description.references ON.LAB.Driving SDN Adoption in Service Provider Networks.2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf es_ES
dc.description.references BabikerH NikolovaI ChittimaneniKKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:LISA'11 Proceedings of the 25th International Conference on Large Installation System Administration 2011:10. es_ES
dc.description.references ParkHW HwangISLS LeeJR.Study on the sustainable migration to software defined network for nation‐wide R&E network.Proc—201610th Int Conf Innov Mob Internet Serv Ubiquitous Comput IMIS2016.2016:392‐396.https://doi.org/10.1109/IMIS.2016.117 es_ES
dc.description.references CariaM JukanA HoffmannM.A performance study of network migration to SDN‐enabled traffic engineering. In:2013 IEEE Global Communications Conference (GLOBECOM); 2013:1391‐1396. es_ES
dc.description.references Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003 es_ES
dc.description.references LENCSE, G., & KADOBAYASHI, Y. (2019). Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis. IEICE Transactions on Communications, E102.B(10), 2021-2035. doi:10.1587/transcom.2018ebr0002 es_ES
dc.description.references NIST.Technical and Economic Assessment of Internet Protocol Verson 6 9IPv6.2006.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912231 es_ES
dc.description.references NIST.IPv6 Economic Impact Assessment. NY;2005.https://www.nist.gov/system/files/documents/director/planning/report05-2.pdf es_ES
dc.description.references DasT CariaM JukanA HoffmannM.A Techno‐economic Analysis of Network Migration to Software‐Defined Networking.2013.http://arxiv.org/abs/1310.0216 es_ES
dc.description.references Das, T., Drogon, M., Jukan, A., & Hoffmann, M. (2014). Study of Network Migration to New Technologies Using Agent-Based Modeling Techniques. Journal of Network and Systems Management, 23(4), 920-949. doi:10.1007/s10922-014-9327-3 es_ES
dc.description.references Yuan, T., Huang, X., Ma, M., & Zhang, P. (2017). Migration to software-defined networks: The customers’ view. China Communications, 14(10), 1-11. doi:10.1109/cc.2017.8107628 es_ES
dc.description.references TürkS LiuY RadekeR LehnertR.Network migration optimization using genetic algorithms. In: Meeting of the European Network of Universities and Companies in Information and Communication Engineering. 2012:112–123. es_ES
dc.description.references Türk, S. (2014). Network migration optimization using meta-heuristics. AEU - International Journal of Electronics and Communications, 68(7), 584-586. doi:10.1016/j.aeue.2014.04.005 es_ES
dc.description.references TürkS RadekeR LehnertR.Network migration using ant colony optimization. In:2010 9th Conference of Telecommunication Media and Internet; 2010:1–6. es_ES
dc.description.references TurkS LiuH RadekeR LehnertR.Improving network migration optimization utilizing memetic algorithms. In: Global Information Infrastructure Symposium—GIIS 2013. 2013:1‐8.https://doi.org/10.1109/GIIS.2013.6684345 es_ES
dc.description.references ShayaniD Mas MachucaC JagerM GladischA.Cost analysis of the service migration problem between communication platforms. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium. 2008:734‐737.https://doi.org/10.1109/NOMS.2008.4575201 es_ES
dc.description.references Shayani, D., Mas Machuca, C., & Jager, M. (2010). A techno-economic approach to telecommunications: the case of service migration. IEEE Transactions on Network and Service Management, 7(2), 96-106. doi:10.1109/tnsm.2010.06.i8p0297 es_ES
dc.description.references Naudts, B., Kind, M., Verbrugge, S., Colle, D., & Pickavet, M. (2015). How can a mobile service provider reduce costs with software-defined networking? International Journal of Network Management, 26(1), 56-72. doi:10.1002/nem.1919 es_ES
dc.description.references Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24 es_ES
dc.description.references BezrukVM ChebotarovaD V KaliuzhniyNM QiangG YuZ.Optimization and mathematical modeling of communication networks.Monogr—Open Electron Arch Kharkov Natl Univ Radio Electron.2019.http://openarchive.nure.ua/handle/document/10121 es_ES
dc.description.references Omantek. Open‐AudIT: Device Information Management System.https://www.open-audit.org/about.php es_ES
dc.description.references Net. Inventory Advisor.Network Inventory Software.https://www.network-inventory-advisor.com/. Accessed December 3 2019. es_ES
dc.description.references OCS‐Inventory. OCSING: Open Inventory Next Generation.https://ocsinventory-ng.org/?lang=en. Accessed December 3 2019. es_ES
dc.description.references Group MW. Migration Use Cases and Methods Migration Working Group Open Networking Foundation Use Cases and Migration Methods 2.www.opennetworking.org es_ES
dc.description.references Sohn, S. Y., & Kim, Y. (2011). Economic Evaluation Model for International Standardization of Correlated Technologies. IEEE Transactions on Engineering Management, 58(2), 189-198. doi:10.1109/tem.2010.2058853 es_ES
dc.description.references ONF TS‐006.OpenFlow 1.3 Switch Specification.2012.https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf es_ES
dc.description.references MahlooM MontiP ChenJ WosinskaL.Cost modeling of backhaul for mobile networks. In: 2014 IEEE International Conference on Communications Workshops (ICC). 2014:397–402.https://doi.org/10.1109/ICCW.2014.6881230 es_ES
dc.description.references DawadiBR RawatDB JoshiSR KeitschMM.Joint cost estimation approach for service provider legacy network migration to unified software defined IPv6 network. In: Proceedings—4th IEEE International Conference on Collaboration and Internet Computing CIC 2018.2018.https://doi.org/10.1109/CIC.2018.00056 es_ES
dc.description.references FengT BiJ.OpenRouteFlow: Enable legacy router as a software‐defined routing service for hybrid SDN. In: 2015 24th International Conference on Computer Communication and Networks (ICCCN).2015:1–8. es_ES
dc.description.references MachucaCM EberspaecherJ JägerM GladischA.Service migration cost modeling. In: 2007 ITG Symposium on Photonic Networks. ; 2007:1–5. es_ES
dc.description.references Poularakis, K., Iosifidis, G., Smaragdakis, G., & Tassiulas, L. (2019). Optimizing Gradual SDN Upgrades in ISP Networks. IEEE/ACM Transactions on Networking, 27(1), 288-301. doi:10.1109/tnet.2018.2890248 es_ES
dc.description.references Galán-Jiménez, J. (2017). Legacy IP-upgraded SDN nodes tradeoff in energy-efficient hybrid IP/SDN networks. Computer Communications, 114, 106-123. doi:10.1016/j.comcom.2017.10.010 es_ES
dc.description.references Vizarreta, P., Trivedi, K., Helvik, B., Heegaard, P., Blenk, A., Kellerer, W., & Mas Machuca, C. (2018). Assessing the Maturity of SDN Controllers With Software Reliability Growth Models. IEEE Transactions on Network and Service Management, 15(3), 1090-1104. doi:10.1109/tnsm.2018.2848105 es_ES
dc.description.references Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., … Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622 es_ES
dc.description.references DasT GurusamyM.Resilient Controller Placement in Hybrid SDN/Legacy Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM). 2018:1–7. es_ES
dc.description.references DasT GurusamyM.INCEPT: INcremental ControllEr PlacemenT in software defined networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN). 2018:1–6. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem