Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)
Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)
Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537
[+]
Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)
Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)
Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537
Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3
Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48(2019), 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021
McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 27(4), 12–14 (2006)
Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 2. Heuristech: William Kaufmann, Pitman (1982)
High-Level Expert Group on Artificial Intelligence, European Commission. A definition of AI: main capabilities and disciplines (2019)
Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability (Switzerland) 12(2) (2020). https://doi.org/10.3390/su12020492
Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43(6), 1928–1973 (2019). https://doi.org/10.1002/er.4333
Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision-making in the era of big data. Evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)
Varshney, S., Jigyasu, R., Sharma, A., Mathew, L.: Review of various artificial intelligence techniques and its applications. IOP Conf. Ser. Mater. Sci. Eng. 594(1) (2019)
Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43, 1928–1973 (2019)
Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020
Metaxiotis, K.S., Askounis, D., Psarras, J.: Expert Systems In Production Planning And Scheduling: A State-Of-The-Art Survey. J. Intell. Manuf. 13(4), 253–260 (2002). https://doi.org/10.1023/A:1016064126976
Power, Y., Bahri, P.A.: Integration techniques in intelligent operational management: a review. Knowl. Based Syst. 18(2–3), 89–97 (2005). https://doi.org/10.1016/j.knosys.2004.04.009
Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006). https://doi.org/10.1016/j.aei.2006.05.004
Kobbacy, K.A.H., Vadera, S., Rasmy, M.H.: AI and OR in management of operations: history and trends. J. Oper. Res. Soc. 58(1), 10–28 (2007). https://doi.org/10.1057/palgrave.jors.2602132
Zhang, W.J., Xie, S.Q.: Agent technology for collaborative process planning: a review. Int. J. Adv. Manuf. Technol. 32(3), 315–325 (2007). https://doi.org/10.1007/s00170-005-0345-x
Ibáñez, O., Cordón, O., Damas, S., Magdalena, L.: A review on the application of hybrid artificial intelligence systems to optimization problems in operations management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 360–367. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_43
Kobbacy, K.A.H., Vadera, S.: A survey of AI in operations management from 2005 to 2009. J. Manuf. Technol. Manag. 22(6), 706–733 (2011). https://doi.org/10.1108/17410381111149602
Guo, Z.X., Wong, W.K., Leung, S.Y.S., Li, M.: Applications of artificial intelligence in the apparel industry: a review. Text. Res. J. 81(18), 1871–1892 (2011). https://doi.org/10.1177/0040517511411968
Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 28(1), 83–97 (2014). https://doi.org/10.1017/S0890060413000516
Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72(1–4), 403–418 (2014). https://doi.org/10.1007/s00170-014-5674-1
Ngai, E.W.T., Peng, S., Alexander, P., Moon, K.K.L.: Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl. 41(1), 81–91 (2014). https://doi.org/10.1016/j.eswa.2013.07.013
Rooh, U.A., Li, A., Ali, M.M.: Fuzzy, neural network and expert systems methodologies and applications - a review. J. Mob. Multimedia 11, 157–176 (2015)
Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., Obiwanne, A.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition (2016)
Arvitrida, N.I.: A review of agent-based modeling approach in the supply chain collaboration context. IOP Conf. Ser. Mater. Sci. Eng. 337(1) (2018). https://doi.org/10.1088/1757-899x/337/1/012015
Zanon, L.G., Carpinetti, L.C.R.: Fuzzy cognitive maps and grey systems theory in the supply chain management context: a literature review and a research proposal. In: IEEE International Conference on Fuzzy Systems, July 2018, pp. 1–8 (2018). https://doi.org/10.1109/fuzz-ieee.2018.8491473
Burggräf, P., Wagner, J., Koke, B.: Artificial intelligence in production management: a review of the current state of affairs and research trends in academia. In: 2018 International Conference on Information Management and Processing, ICIMP 2018, January 2018, pp. 82–88 (2018). https://doi.org/10.1109/icimp1.2018.8325846
Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005
Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybernet. 11(7), 1463–1482 (2019). https://doi.org/10.1007/s13042-019-01050-0
Ning, C., You, F.: Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. Comput. Chem. Eng. 125, 434–448 (2019). https://doi.org/10.1016/j.compchemeng.2019.03.034
Okwu, M.O., Nwachukwu, A.N.: A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J. Petrol. Explor. Prod. Technol. 9(2), 1555–1568 (2018). https://doi.org/10.1007/s13202-018-0560-2
Weber, F.D., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digit. Policy Regul. Gov. 21(3), 264–279 (2019). https://doi.org/10.1108/DPRG-09-2018-0050
Giri, C., Jain, S., Zeng, X., Bruniaux, P.: A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access 7, 95376–95396 (2019). https://doi.org/10.1109/ACCESS.2019.2928979
Leo Kumar, S.P.: Knowledge-based expert system in manufacturing planning: State-of-the-art review. Int. J. Prod. Res. 57(15–16), 4766–4790 (2019). https://doi.org/10.1080/00207543.2018.1424372
Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. (2020). https://doi.org/10.1016/j.rtbm.2020.100453
Chai, J., Ngai, E.W.T.: Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst. Appl. 140 (2020). https://doi.org/10.1016/j.eswa.2019.112903
Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7
Ekramifard, A., Amintoosi, H., Seno, A.H., Dehghantanha, A., Parizi, R.M.: A systematic literature review of integration of blockchain and artificial intelligence. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.) Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38181-3_8
Vrbka, J., Rowland, Z.: Using artificial intelligence in company management. In: Ashmarina, S.I., Vochozka, M., Mantulenko, V.V. (eds.) ISCDTE 2019. LNNS, vol. 84, pp. 422–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27015-5_51
Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute (2019)
Queiroz, M.M., Ivanov, D., Dolgui, A., et al.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03685-7
[-]