Diaz, H.; Sala, A.; Armesto Ángel, L. (2020). A linear programming methodology for approximate dynamic programming. International Journal of Applied Mathematics and Computer Science (Online). 30(2):363-375. https://doi.org/10.34768/amcs-2020-0028
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169054
Title:
|
A linear programming methodology for approximate dynamic programming
|
Author:
|
Diaz, Henry
Sala, Antonio
Armesto Ángel, Leopoldo
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
|
Issued date:
|
|
Abstract:
|
[EN] The linear programming (LP) approach to solve the Bellman equation in dynamic programming is a well-known option for
finite state and input spaces to obtain an exact solution. However, with function approximation or ...[+]
[EN] The linear programming (LP) approach to solve the Bellman equation in dynamic programming is a well-known option for
finite state and input spaces to obtain an exact solution. However, with function approximation or continuous state spaces,
refinements are necessary. This paper presents a methodology to make approximate dynamic programming via LP work
in practical control applications with continuous state and input spaces. There are some guidelines on data and regressor
choices needed to obtain meaningful and well-conditioned value function estimates. The work discusses the introduction of
terminal ingredients and computation of lower and upper bounds of the value function. An experimental inverted-pendulum
application will be used to illustrate the proposal and carry out a suitable comparative analysis with alternative options in
the literature.
[-]
|
Subjects:
|
Linear programming
,
Approximate dynamic programming
,
Control applications
,
Neural networks
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
International Journal of Applied Mathematics and Computer Science (Online). (eissn:
2083-8492
)
|
DOI:
|
10.34768/amcs-2020-0028
|
Publisher:
|
De Gruyter Open Sp. z o.o.
|
Publisher version:
|
https://doi.org/10.34768/amcs-2020-0028
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//DPI2016-81002-R/ES/CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/
|
Thanks:
|
The authors are grateful for the financial support of the Spanish Ministry of Economy and the European Union, grant DPI2016-81002-R (AEI/FEDER, UE), and the PhD grant from the Government of Ecuador (SENESCYT).
|
Type:
|
Artículo
|