- -

Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem

Mostrar el registro completo del ítem

Sapena-Bano, A.; Martinez-Roman, J.; Puche-Panadero, R.; Pineda Sánchez, M.; Pérez-Cruz, J.; Riera-Guasp, M. (2020). Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem. International Journal of Electrical Power & Energy Systems. 117:1-19. https://doi.org/10.1016/j.ijepes.2019.105625

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169060

Ficheros en el ítem

Metadatos del ítem

Título: Induction machine model with space harmonics for the diagnosis of rotor eccentricity, based on the convolution theorem
Autor: Sapena-Bano, Angel Martinez-Roman, Javier Puche-Panadero, Rubén Pineda Sánchez, Manuel Pérez-Cruz, Juan Riera-Guasp, Martín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Condition based maintenance (CBM) systems of induction machines (IMs) require fast and accurate models that can reproduce the fault related harmonics generated by different kinds of faults. Such models are needed to ...[+]
Palabras clave: Inductance , Induction machines , Convolution , Discrete Fourier transforms , Fault diagnosis , Air gap eccentricity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Electrical Power & Energy Systems. (issn: 0142-0615 )
DOI: 10.1016/j.ijepes.2019.105625
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijepes.2019.105625
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102175-B-I00/ES/DISEÑO DE MODELOS AVANZADOS DE SIMULACION DE AEROGENERADORES PARA EL DESARROLLO Y PUESTA A PUNTO DE SISTEMAS DE DIAGNOSTICO DE AVERIAS "ON-LINE"./
Agradecimientos:
This work was supported by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agenda Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the ...[+]
Tipo: Artículo

References

Liu, Y., & Bazzi, A. M. (2017). A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA Transactions, 70, 400-409. doi:10.1016/j.isatra.2017.06.001

Balasubramanian, A., & Muthu, R. (2017). Model Based Fault Detection and Diagnosis of Doubly Fed Induction Generators – A Review. Energy Procedia, 117, 935-942. doi:10.1016/j.egypro.2017.05.213

Bellini, A., Filippetti, F., Tassoni, C., & Capolino, G.-A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55(12), 4109-4126. doi:10.1109/tie.2008.2007527 [+]
Liu, Y., & Bazzi, A. M. (2017). A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art. ISA Transactions, 70, 400-409. doi:10.1016/j.isatra.2017.06.001

Balasubramanian, A., & Muthu, R. (2017). Model Based Fault Detection and Diagnosis of Doubly Fed Induction Generators – A Review. Energy Procedia, 117, 935-942. doi:10.1016/j.egypro.2017.05.213

Bellini, A., Filippetti, F., Tassoni, C., & Capolino, G.-A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55(12), 4109-4126. doi:10.1109/tie.2008.2007527

Culbert, I., & Letal, J. (2017). Signature Analysis for Online Motor Diagnostics: Early Detection of Rotating Machine Problems Prior to Failure. IEEE Industry Applications Magazine, 23(4), 76-81. doi:10.1109/mias.2016.2600684

Manohar, M., Koley, E., & Ghosh, S. (2019). Enhancing resilience of PV-fed microgrid by improved relaying and differentiating between inverter faults and distribution line faults. International Journal of Electrical Power & Energy Systems, 108, 271-279. doi:10.1016/j.ijepes.2019.01.015

Xia, X., Zhou, J., Li, C., & Zhu, W. (2015). A novel method for fault diagnosis of hydro generator based on NOFRFs. International Journal of Electrical Power & Energy Systems, 71, 60-67. doi:10.1016/j.ijepes.2015.02.022

Zhao, B., Yang, M., Diao, H. R., An, B., Zhao, Y. C., & Zhang, Y. M. (2019). A novel approach to transformer fault diagnosis using IDM and naive credal classifier. International Journal of Electrical Power & Energy Systems, 105, 846-855. doi:10.1016/j.ijepes.2018.09.029

Zhang, Y., Zhang, Y., Wen, F., Chung, C. Y., Tseng, C.-L., Zhang, X., … Yuan, Y. (2016). A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints. International Journal of Electrical Power & Energy Systems, 78, 215-224. doi:10.1016/j.ijepes.2015.11.095

Farshad, M. (2019). Detection and classification of internal faults in bipolar HVDC transmission lines based on K-means data description method. International Journal of Electrical Power & Energy Systems, 104, 615-625. doi:10.1016/j.ijepes.2018.07.044

Yahia, K., Sahraoui, M., Cardoso, A. J. M., & Ghoggal, A. (2016). The Use of a Modified Prony’s Method to Detect the Airgap-Eccentricity Occurrence in Induction Motors. IEEE Transactions on Industry Applications, 52(5), 3869-3877. doi:10.1109/tia.2016.2582146

El Bouchikhi, E. H., Choqueuse, V., & Benbouzid, M. (2015). Induction machine faults detection using stator current parametric spectral estimation. Mechanical Systems and Signal Processing, 52-53, 447-464. doi:10.1016/j.ymssp.2014.06.015

Morales-Perez, C., Rangel-Magdaleno, J., Peregrina-Barreto, H., Amezquita-Sanchez, J. P., & Valtierra-Rodriguez, M. (2018). Incipient Broken Rotor Bar Detection in Induction Motors Using Vibration Signals and the Orthogonal Matching Pursuit Algorithm. IEEE Transactions on Instrumentation and Measurement, 67(9), 2058-2068. doi:10.1109/tim.2018.2813820

Faiz, J., & Ojaghi, M. (2009). Instantaneous-Power Harmonics as Indexes for Mixed Eccentricity Fault in Mains-Fed and Open/Closed-Loop Drive-Connected Squirrel-Cage Induction Motors. IEEE Transactions on Industrial Electronics, 56(11), 4718-4726. doi:10.1109/tie.2009.2030816

Oumaamar, M. E. K., Maouche, Y., Boucherma, M., & Khezzar, A. (2017). Static air-gap eccentricity fault diagnosis using rotor slot harmonics in line neutral voltage of three-phase squirrel cage induction motor. Mechanical Systems and Signal Processing, 84, 584-597. doi:10.1016/j.ymssp.2016.07.016

Resendiz-Ochoa, E., Osornio-Rios, R. A., Benitez-Rangel, J. P., De J. Romero-Troncoso, R., & Morales-Hernandez, L. A. (2018). Induction Motor Failure Analysis: An Automatic Methodology Based on Infrared Imaging. IEEE Access, 6, 76993-77003. doi:10.1109/access.2018.2883988

Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(4), 3961-3970. doi:10.1109/tia.2018.2821098

Sangeetha B., P., & S., H. (2019). Rational-Dilation Wavelet Transform Based Torque Estimation from Acoustic Signals for Fault Diagnosis in a Three-Phase Induction Motor. IEEE Transactions on Industrial Informatics, 15(6), 3492-3501. doi:10.1109/tii.2018.2874463

Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2017). Low Complexity Motor Current Signature Analysis Using Sub-Nyquist Strategy With Reduced Data Length. IEEE Transactions on Instrumentation and Measurement, 66(12), 3249-3259. doi:10.1109/tim.2017.2737879

Kaikaa, M. Y., Hadjami, M., & Khezzar, A. (2014). Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine. IEEE Transactions on Industrial Electronics, 61(5), 2452-2463. doi:10.1109/tie.2013.2270216

Singh, G., & Naikan, V. N. A. (2018). Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis. Mechanical Systems and Signal Processing, 110, 333-348. doi:10.1016/j.ymssp.2018.03.001

Singh, A., Grant, B., DeFour, R., Sharma, C., & Bahadoorsingh, S. (2016). A review of induction motor fault modeling. Electric Power Systems Research, 133, 191-197. doi:10.1016/j.epsr.2015.12.017

Gangsar, P., & Tiwari, R. (2019). A support vector machine based fault diagnostics of Induction motors for practical situation of multi-sensor limited data case. Measurement, 135, 694-711. doi:10.1016/j.measurement.2018.12.011

Ojaghi, M., Aghmasheh, R., & Sabouri, M. (2016). Model‐based exact technique to identify type and degree of eccentricity faults in induction motors. IET Electric Power Applications, 10(8), 706-713. doi:10.1049/iet-epa.2016.0026

Salah, A. A., Dorrell, D. G., & Guo, Y. (2019). A Review of the Monitoring and Damping Unbalanced Magnetic Pull in Induction Machines Due to Rotor Eccentricity. IEEE Transactions on Industry Applications, 55(3), 2569-2580. doi:10.1109/tia.2019.2892359

Faiz, J., & Moosavi, S. M. M. (2017). Detection of mixed eccentricity fault in doubly‐fed induction generator based on reactive power spectrum. IET Electric Power Applications, 11(6), 1076-1084. doi:10.1049/iet-epa.2016.0449

Naderi, P., & Fallahi, F. (2016). Eccentricity fault diagnosis in three-phase-wound-rotor induction machine using numerical discrete modeling method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(5), 982-997. doi:10.1002/jnm.2157

Faiz, J., & Moosavi, S. M. M. (2016). Eccentricity fault detection – From induction machines to DFIG—A review. Renewable and Sustainable Energy Reviews, 55, 169-179. doi:10.1016/j.rser.2015.10.113

Silwal, B., Rasilo, P., Perkkio, L., Hannukainen, A., Eirola, T., & Arkkio, A. (2016). Numerical Analysis of the Power Balance of an Electrical Machine With Rotor Eccentricity. IEEE Transactions on Magnetics, 52(3), 1-4. doi:10.1109/tmag.2015.2477847

Yao, Y., Li, Y., & Yin, Q. (2019). A novel method based on self-sensing motor drive system for misalignment detection. Mechanical Systems and Signal Processing, 116, 217-229. doi:10.1016/j.ymssp.2018.06.030

Dorrell, D. G. (2011). Sources and Characteristics of Unbalanced Magnetic Pull in Three-Phase Cage Induction Motors With Axial-Varying Rotor Eccentricity. IEEE Transactions on Industry Applications, 47(1), 12-24. doi:10.1109/tia.2010.2090845

Xu, X., Han, Q., & Chu, F. (2018). A general electromagnetic excitation model for electrical machines considering the magnetic saturation and rub impact. Journal of Sound and Vibration, 416, 154-171. doi:10.1016/j.jsv.2017.11.050

Faiz, J., Ebrahimi, B. M., & Sharifian, M. B. B. (2007). Finite Element Transient Analysis of an On-Load Three-Phase Squirrel-Cage Induction Motor with Static Eccentricity. Electromagnetics, 27(4), 207-227. doi:10.1080/02726340701272154

BeBortoli, M. J., Salon, S. J., Burow, D. W., & Slavik, C. J. (1993). Effects of rotor eccentricity and parallel windings on induction machine behavior: a study using finite element analysis. IEEE Transactions on Magnetics, 29(2), 1676-1682. doi:10.1109/20.250728

Faiz, J., Ebrahimi, B. M., Akin, B., & Toliyat, H. A. (2009). Comprehensive Eccentricity Fault Diagnosis in Induction Motors Using Finite Element Method. IEEE Transactions on Magnetics, 45(3), 1764-1767. doi:10.1109/tmag.2009.2012812

Martinez, J., Belahcen, A., Detoni, J., & Arkkio, A. (2013). A 2D FEM analysis of electromechanical signatures in induction motors under dynamic eccentricity. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 27(3), 555-571. doi:10.1002/jnm.1942

Thiele, M., & Heins, G. (2016). Computationally Efficient Method for Identifying Manufacturing Induced Rotor and Stator Misalignment in Permanent Magnet Brushless Machines. IEEE Transactions on Industry Applications, 52(4), 3033-3040. doi:10.1109/tia.2016.2552145

Ajily, E., Ardebili, M., & Abbaszadeh, K. (2016). Magnet Defect and Rotor Eccentricity Modeling in Axial-Flux Permanent-Magnet Machines via 3-D Field Reconstruction Method. IEEE Transactions on Energy Conversion, 31(2), 486-495. doi:10.1109/tec.2015.2506819

Mahmoud, H., & Bianchi, N. (2015). Eccentricity in Synchronous Reluctance Motors—Part I: Analytical and Finite-Element Models. IEEE Transactions on Energy Conversion, 30(2), 745-753. doi:10.1109/tec.2014.2384535

Faiz, J., Ghasemi-Bijan, M., & Mahdi Ebrahimi, B. (2015). Modeling and Diagnosing Eccentricity Fault Using Three-dimensional Magnetic Equivalent Circuit Model of Three-phase Squirrel-cage Induction Motor. Electric Power Components and Systems, 43(11), 1246-1256. doi:10.1080/15325008.2015.1029651

Garg, H., & Dahiya, R. (2016). Current signature analysis and its application in the condition monitoring of wind turbine for rotor faults. Energy Systems, 8(3), 495-510. doi:10.1007/s12667-016-0208-6

Bao, X., Cheng, Z., & Di, C. (2017). Current analysis of large submersible motor under curved eccentricity by multi-loop method. International Journal of Applied Electromagnetics and Mechanics, 53(1), 63-76. doi:10.3233/jae-160005

Rajalakshmi Samaga, B. L., & Vittal, K. P. (2012). Comprehensive study of mixed eccentricity fault diagnosis in induction motors using signature analysis. International Journal of Electrical Power & Energy Systems, 35(1), 180-185. doi:10.1016/j.ijepes.2011.10.011

Ghoggal, A., Zouzou, S. E., Razik, H., Sahraoui, M., & Khezzar, A. (2009). An improved model of induction motors for diagnosis purposes – Slot skewing effect and air–gap eccentricity faults. Energy Conversion and Management, 50(5), 1336-1347. doi:10.1016/j.enconman.2009.01.003

Faiz, J., & Ojaghi, M. (2009). Unified winding function approach for dynamic simulation of different kinds of eccentricity faults in cage induction machines. IET Electric Power Applications, 3(5), 461. doi:10.1049/iet-epa.2008.0206

Toliyat, H. A., Lipo, T. A., & White, J. C. (1991). Analysis of a concentrated winding induction machine for adjustable speed drive applications. I. Motor analysis. IEEE Transactions on Energy Conversion, 6(4), 679-683. doi:10.1109/60.103641

Ghoggal A, Zouzou SE, Razik H, Sahraoui M, Hadri-Hamida A. Application of the convolution theorem for the modeling of saturated induction motors. In: IECON 2010–36th Annu Conf IEEE Ind Electron Soc, IEEE; 2010. p. 772–7.

Ghoggal, A., Sahraoui, M., Zouzou, S. E., & Razik, H. (2013). A Fast Inductance Computation Devoted to the Modeling of Healthy, Eccentric, and Saturated Induction Motors. Electric Power Components and Systems, 41(10), 1002-1022. doi:10.1080/15325008.2013.801056

Sapena-Bano, A., Martinez-Roman, J., Puche-Panadero, R., Pineda-Sanchez, M., Perez-Cruz, J., & Riera-Guasp, M. (2018). Induction machine model with space harmonics for fault diagnosis based on the convolution theorem. International Journal of Electrical Power & Energy Systems, 100, 463-481. doi:10.1016/j.ijepes.2018.03.001

Horen, Y., Strajnikov, P., & Kuperman, A. (2015). Simple mechanical parameters identification of induction machine using voltage sensor only. Energy Conversion and Management, 92, 60-66. doi:10.1016/j.enconman.2014.12.041

Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Riera-Guasp, M., & Perez-Cruz, J. (2018). Partial Inductance Model of Induction Machines for Fault Diagnosis. Sensors, 18(7), 2340. doi:10.3390/s18072340

Ikeda, M., & Hiyama, T. (2007). Simulation Studies of the Transients of Squirrel-Cage Induction Motors. IEEE Transactions on Energy Conversion, 22(2), 233-239. doi:10.1109/tec.2006.874203

Staszak, J. (2013). Determination of slot leakage inductance for three-phase induction motor winding using an analytical method. Archives of Electrical Engineering, 62(4), 569-591. doi:10.2478/aee-2013-0046

Joksimovic, G. M., Durovic, M. D., Penman, J., & Arthur, N. (2000). Dynamic simulation of dynamic eccentricity in induction machines-winding function approach. IEEE Transactions on Energy Conversion, 15(2), 143-148. doi:10.1109/60.866991

Nandi, S., Bharadwaj, R. M., & Toliyat, H. A. (2002). Performance analysis of a three-phase induction motor under mixed eccentricity condition. IEEE Transactions on Energy Conversion, 17(3), 392-399. doi:10.1109/tec.2002.801995

Faiz, J., & Tabatabaei, I. (2002). Extension of winding function theory for nonuniform air gap in electric machinery. IEEE Transactions on Magnetics, 38(6), 3654-3657. doi:10.1109/tmag.2002.804805

Bossio, G., DeAngelo, C., Solsona, J., Garcia, G., & Valla, M. I. (2004). A 2-D Model of the Induction Machine: An Extension of the Modified Winding Function Approach. IEEE Transactions on Energy Conversion, 19(1), 144-150. doi:10.1109/tec.2003.822294

Faiz, J., Ardekanei, I. T., & Toliyat, H. A. (2003). An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions. IEEE Transactions on Energy Conversion, 18(2), 252-258. doi:10.1109/tec.2003.811740

Li, X., Wu, Q., & Nandi, S. (2007). Performance Analysis of a Three-Phase Induction Machine With Inclined Static Eccentricity. IEEE Transactions on Industry Applications, 43(2), 531-541. doi:10.1109/tia.2006.889806

Meeker D. Finite element method magnetics. User’s Manual. Version 4.0; 2004.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem