Mostrar el registro sencillo del ítem
dc.contributor.author | Geschwindner, Christopher | es_ES |
dc.contributor.author | Kranz, Patrick | es_ES |
dc.contributor.author | Welch, Cooper | es_ES |
dc.contributor.author | Schmidt, Marius | es_ES |
dc.contributor.author | Bohm, Benjamin | es_ES |
dc.contributor.author | Kaiser, Sebastian A. | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.date.accessioned | 2021-07-13T03:30:50Z | |
dc.date.available | 2021-07-13T03:30:50Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169139 | |
dc.description | This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419881535. | es_ES |
dc.description.abstract | [EN] An investigation of the interaction between the in-cylinder flow and the spray topology in two spray-guided direct injection optical engines is reported. The bulk flow field in the combustion chamber is characterized using particle image velocimetry. Geometrical parameters such as the axial penetration and the spray angle of the liquid spray are measured using Mie scatter imaging and/or diffuse back-illumination. The measured parameters are compared with data from a constant volume chamber available in the literature. For a late injection strategy, the so-called ECN Spray G standard condition, the mean values of the spray penetration do not seem to be significantly perturbed by the in-cylinder flow motion until the plumes approach the piston surface. However, spray probability maps reveal that cycle-to-cycle fluctuations of the spatial distribution of the liquid spray are affected by the magnitude of the in-cylinder flow. Particle image velocimetry during injection shows that the flow field in the vicinity of the spray plumes is heavily influenced by air entrainment, and that an upward flow in-between spray plumes develops. Consistent with previous research that demonstrated the importance of the latter flow structure for the prevention of spray collapse, it is found that increased in-cylinder flow magnitudes due to increased intake valve lifts or engine speeds enhance the spray-shape stability. Compared with cases without injection, the influence of the spray on the in-cylinder flow field is still noticeable approximately 2.5 ms after the start of injection. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work at UDE was funded by the Research Association for Combustion Engines eV (FVV, Frankfurt/Main, project 1203). TUD kindly acknowledges generous support by Deutsche Forschungsgemeinschaft through SFB/Transregio 150 (project number 237267381-TRR150). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Engine Combustion Network | es_ES |
dc.subject | Spray G | es_ES |
dc.subject | Spark-ignition direct injection | es_ES |
dc.subject | Particle image velocimetry | es_ES |
dc.subject | Spray penetration | es_ES |
dc.subject | Spray angle | es_ES |
dc.subject | Spray-flow interaction | es_ES |
dc.subject | Spray collapse | es_ES |
dc.subject | Diffuse back-illumination | es_ES |
dc.subject | Mie scattering | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Analysis of the interaction of Spray G and in-cylinder flow in two optical engines for late gasoline direct injection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419881535 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//237267381-TRR150/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FVV//1203/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Geschwindner, C.; Kranz, P.; Welch, C.; Schmidt, M.; Bohm, B.; Kaiser, SA.; De La Morena, J. (2020). Analysis of the interaction of Spray G and in-cylinder flow in two optical engines for late gasoline direct injection. International Journal of Engine Research. 21(1):169-184. https://doi.org/10.1177/1468087419881535 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419881535 | es_ES |
dc.description.upvformatpinicio | 169 | es_ES |
dc.description.upvformatpfin | 184 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\401572 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Forschungsvereinigung Verbrennungskraftmaschinen | es_ES |
dc.description.references | Alkidas, A. C. (2007). Combustion advancements in gasoline engines. Energy Conversion and Management, 48(11), 2751-2761. doi:10.1016/j.enconman.2007.07.027 | es_ES |
dc.description.references | Costa, M., Marchitto, L., Merola, S. S., & Sorge, U. (2014). Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging. Energy, 77, 88-96. doi:10.1016/j.energy.2014.04.114 | es_ES |
dc.description.references | Zhao, F., Lai, M.-C., & Harrington, D. . (1999). Automotive spark-ignited direct-injection gasoline engines. Progress in Energy and Combustion Science, 25(5), 437-562. doi:10.1016/s0360-1285(99)00004-0 | es_ES |
dc.description.references | Moreira, A. L. N., Moita, A. S., & Panão, M. R. (2010). Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Progress in Energy and Combustion Science, 36(5), 554-580. doi:10.1016/j.pecs.2010.01.002 | es_ES |
dc.description.references | Oh, H., & Bae, C. (2013). Effects of the injection timing on spray and combustion characteristics in a spray-guided DISI engine under lean-stratified operation. Fuel, 107, 225-235. doi:10.1016/j.fuel.2013.01.019 | es_ES |
dc.description.references | Park, C., Kim, S., Kim, H., & Moriyoshi, Y. (2012). Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine. Energy, 41(1), 401-407. doi:10.1016/j.energy.2012.02.060 | es_ES |
dc.description.references | Stiehl, R., Schorr, J., Krüger, C., Dreizler, A., & Böhm, B. (2013). In-Cylinder Flow and Fuel Spray Interactions in a Stratified Spray-Guided Gasoline Engine Investigated by High-Speed Laser Imaging Techniques. Flow, Turbulence and Combustion, 91(3), 431-450. doi:10.1007/s10494-013-9500-x | es_ES |
dc.description.references | Piock, W. F., Befrui, B., Berndorfer, A., & Hoffmann, G. (2015). Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions. SAE International Journal of Engines, 8(2), 464-473. doi:10.4271/2015-01-0746 | es_ES |
dc.description.references | Fansler, T. D., Reuss, D. L., Sick, V., & Dahms, R. N. (2015). Invited Review: Combustion instability in spray-guided stratified-charge engines: A review. International Journal of Engine Research, 16(3), 260-305. doi:10.1177/1468087414565675 | es_ES |
dc.description.references | Drake, M. C., & Haworth, D. C. (2007). Advanced gasoline engine development using optical diagnostics and numerical modeling. Proceedings of the Combustion Institute, 31(1), 99-124. doi:10.1016/j.proci.2006.08.120 | es_ES |
dc.description.references | Fansler, T. D., Stojkovic, B., Drake, M. C., & Rosalik, M. E. (2002). Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy. Applied Physics B: Lasers and Optics, 75(4-5), 577-590. doi:10.1007/s00340-002-0954-0 | es_ES |
dc.description.references | Peterson, B., Reuss, D. L., & Sick, V. (2014). On the ignition and flame development in a spray-guided direct-injection spark-ignition engine. Combustion and Flame, 161(1), 240-255. doi:10.1016/j.combustflame.2013.08.019 | es_ES |
dc.description.references | Schiffmann, P., Reuss, D. L., & Sick, V. (2017). Empirical investigation of spark-ignited flame-initiation cycle-to-cycle variability in a homogeneous charge reciprocating engine. International Journal of Engine Research, 19(5), 491-508. doi:10.1177/1468087417720558 | es_ES |
dc.description.references | Sementa, P., Maria Vaglieco, B., & Catapano, F. (2012). Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol. Fuel, 96, 204-219. doi:10.1016/j.fuel.2011.12.068 | es_ES |
dc.description.references | Song, J., & Park, S. (2015). EFFECT OF INJECTION STRATEGY ON THE SPRAY DEVELOPMENT PROCESS IN A SINGLE-CYLINDER OPTICAL GDI ENGINE. Atomization and Sprays, 25(9), 819-836. doi:10.1615/atomizspr.2015012018 | es_ES |
dc.description.references | Parrish, S. E., Zhang, G., & Zink, R. J. (2012). Liquid and Vapor Envelopes of Sprays from a Multi-Hole Fuel Injector Operating under Closely-Spaced Double-Injection Conditions. SAE International Journal of Engines, 5(2), 400-414. doi:10.4271/2012-01-0462 | es_ES |
dc.description.references | Rachakonda, S. K., Paydarfar, A., & Schmidt, D. P. (2018). Prediction of spray collapse in multi-hole gasoline direct-injection fuel injectors. International Journal of Engine Research, 20(1), 18-33. doi:10.1177/1468087418819527 | es_ES |
dc.description.references | Blessinger, M., Manin, J., Skeen, S. A., Meijer, M., Parrish, S., & Pickett, L. M. (2014). Quantitative mixing measurements and stochastic variability of a vaporizing gasoline direct-injection spray. International Journal of Engine Research, 16(2), 238-252. doi:10.1177/1468087414531971 | es_ES |
dc.description.references | Sphicas, P., Pickett, L. M., Skeen, S. A., & Frank, J. H. (2017). Inter-plume aerodynamics for gasoline spray collapse. International Journal of Engine Research, 19(10), 1048-1067. doi:10.1177/1468087417740306 | es_ES |
dc.description.references | Lacey, J., Poursadegh, F., Brear, M. J., Gordon, R., Petersen, P., Lakey, C., … Ryan, S. (2017). Generalizing the behavior of flash-boiling, plume interaction and spray collapse for multi-hole, direct injection. Fuel, 200, 345-356. doi:10.1016/j.fuel.2017.03.057 | es_ES |
dc.description.references | Westlye, F. R., Penney, K., Ivarsson, A., Pickett, L. M., Manin, J., & Skeen, S. A. (2017). Diffuse back-illumination setup for high temporally resolved extinction imaging. Applied Optics, 56(17), 5028. doi:10.1364/ao.56.005028 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Vaquerizo, D. (2017). ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis. Applied Thermal Engineering, 112, 304-316. doi:10.1016/j.applthermaleng.2016.10.023 | es_ES |
dc.description.references | Kranz, P., & Kaiser, S. A. (2019). LIF-based imaging of preferential evaporation of a multi-component gasoline surrogate in a direct-injection engine. Proceedings of the Combustion Institute, 37(2), 1365-1372. doi:10.1016/j.proci.2018.06.214 | es_ES |
dc.description.references | Baum, E., Peterson, B., Böhm, B., & Dreizler, A. (2013). On The Validation of LES Applied to Internal Combustion Engine Flows: Part 1: Comprehensive Experimental Database. Flow, Turbulence and Combustion, 92(1-2), 269-297. doi:10.1007/s10494-013-9468-6 | es_ES |
dc.description.references | Menser, J., Schneider, F., Dreier, T., & Kaiser, S. A. (2018). Multi-pulse shadowgraphic RGB illumination and detection for flow tracking. Experiments in Fluids, 59(6). doi:10.1007/s00348-018-2541-0 | es_ES |