Mostrar el registro sencillo del ítem
dc.contributor.author | Lara-Navarra, Pablo | es_ES |
dc.contributor.author | Falciani, Hervé | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.contributor.author | Ferrer Sapena, Antonia | es_ES |
dc.date.accessioned | 2021-07-14T03:31:05Z | |
dc.date.available | 2021-07-14T03:31:05Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169176 | |
dc.description.abstract | [EN] Comments and information appearing on the internet and on different social media sway opinion concerning potential remedies for diagnosing and curing diseases. In many cases, this has an impact on citizens' health and affects medical professionals, who find themselves having to defend their diagnoses as well as the treatments they propose against ill-informed patients. The propagation of these opinions follows the same pattern as the dissemination of fake news about other important topics, such as the environment, via social media networks, which we use as a testing ground for checking our procedure. In this article, we present an algorithm to analyse the behaviour of users of Twitter, the most important social network with respect to this issue, as well as a dynamic knowledge graph construction method based on information gathered from Twitter and other open data sources such as web pages. To show our methodology, we present a concrete example of how the associated graph structure of the tweets related to World Environment Day 2019 is used to develop a heuristic analysis of the validity of the information. The proposed analytical scheme is based on the interaction between the computer tool-a database implemented with Neo4j-and the analyst, who must ask the right questions to the tool, allowing to follow the line of any doubtful data. We also show how this method can be used. We also present some methodological guidelines on how our system could allow, in the future, an automation of the procedures for the construction of an autonomous algorithm for the detection of false news on the internet related to health. | es_ES |
dc.description.sponsorship | The first-named and the forth-named authors were supported by the Spanish Ministry for Science, Innovation and Universities, the Spanish State Research Agency and the European Regional Development Fund under Research Grant SO2015-65594-C2-1R Y 2R, and to the Catedra de Transparencia y Gestion de Datos UPV/GVA. The third-named author was supported by the Spanish Ministry for Science, Innovation and Universities, the Spanish State Research Agency and the European Regional Development Fund under Research Grant MTM2016-77054-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Healthcare | es_ES |
dc.subject | Environment | es_ES |
dc.subject | Fake news | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Graph | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | BIBLIOTECONOMIA Y DOCUMENTACION | es_ES |
dc.title | Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17031066 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CSO2015-65594-C2-1-R/ES/MODELOS PARA PUBLICAR, CONSUMIR Y MEDIR LA REUTILIZACION DE LOS DATOS DERIVADOS DE LA INVESTIGACION: MAS ALLA DE LAS FRONTERAS INSTITUCIONALES Y GEOGRAFICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CSO2015-65594-C2-2-R/ES/ODELOS PARA PUBLICAR, CONSUMIR Y MEDIR LA REUTILIZACION DE LOS DATOS DERIVADOS DE LA INVESTIGACION: MAS ALLA DE LAS FRONTERAS INSTITUCIONALES Y GEOGRAFICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art | es_ES |
dc.description.bibliographicCitation | Lara-Navarra, P.; Falciani, H.; Sánchez Pérez, EA.; Ferrer Sapena, A. (2020). Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection. International Journal of Environmental research and Public Health (Online). 17(3):1-12. https://doi.org/10.3390/ijerph17031066 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17031066 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 32046238 | es_ES |
dc.identifier.pmcid | PMC7037767 | es_ES |
dc.relation.pasarela | S\423809 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Cátedra de Transparencia y Gestión de datos, Universitat Politècnica de València | es_ES |
dc.description.references | Sato, A. P. S. (2018). What is the importance of vaccine hesitancy in the drop of vaccination coverage in Brazil? Revista de Saúde Pública, 52, 96. doi:10.11606/s1518-8787.2018052001199 | es_ES |
dc.description.references | Los ministerios de Sanidad y Ciencia realizan un primer listado de 73 pseudoterapiashttp://www.rtve.es/noticias/20190228/ministerios-sanidad-ciencia-realizan-primer-listado-73-pseudoterapias/1892081.shtml | es_ES |
dc.description.references | Psoriasis, lupus, alergia… Enfermedades autoinmunes crónicas, o no?https://tunaturopata.es/psoriasis-lupus-autoinmune-tratamiento-natural/ | es_ES |
dc.description.references | Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., … Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. doi:10.1126/science.aao2998 | es_ES |
dc.description.references | Zannettou, S., Sirivianos, M., Blackburn, J., & Kourtellis, N. (2019). The Web of False Information. Journal of Data and Information Quality, 11(3), 1-37. doi:10.1145/3309699 | es_ES |
dc.description.references | McClain, C. R. (2017). Practices and promises of Facebook for science outreach: Becoming a «Nerd of Trust». PLOS Biology, 15(6), e2002020. doi:10.1371/journal.pbio.2002020 | es_ES |
dc.description.references | Social-H2-2018-report Global Web Index Reporthttps://www.globalwebindex.com/reports/social | es_ES |
dc.description.references | White Paper: Redefining Financial Risk and Compliance Practiceshttps://neo4j.com/whitepapers/financial-risk-reporting/ | es_ES |
dc.description.references | Akoglu, L., Tong, H., & Koutra, D. (2014). Graph based anomaly detection and description: a survey. Data Mining and Knowledge Discovery, 29(3), 626-688. doi:10.1007/s10618-014-0365-y | es_ES |
dc.description.references | Unsupervised Profiling Methods for Fraud Detection. Unpublishedhttps://www.semanticscholar.org/paper/Unsupervised-Profiling-Methods-for-Fraud-Detection-Bolton-Hand/5b640c367ae9cc4bd072006b05a3ed7c2d5f496d | es_ES |
dc.description.references | Gao, X., Xiao, B., Tao, D., & Li, X. (2009). A survey of graph edit distance. Pattern Analysis and Applications, 13(1), 113-129. doi:10.1007/s10044-008-0141-y | es_ES |
dc.description.references | Whiting, D. G., Hansen, J. V., McDonald, J. B., Albrecht, C., & Albrecht, W. S. (2012). MACHINE LEARNING METHODS FOR DETECTING PATTERNS OF MANAGEMENT FRAUD. Computational Intelligence, 28(4), 505-527. doi:10.1111/j.1467-8640.2012.00425.x | es_ES |
dc.description.references | Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559-569. doi:10.1016/j.dss.2010.08.006 | es_ES |