- -

Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lara-Navarra, Pablo es_ES
dc.contributor.author Falciani, Hervé es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.contributor.author Ferrer Sapena, Antonia es_ES
dc.date.accessioned 2021-07-14T03:31:05Z
dc.date.available 2021-07-14T03:31:05Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169176
dc.description.abstract [EN] Comments and information appearing on the internet and on different social media sway opinion concerning potential remedies for diagnosing and curing diseases. In many cases, this has an impact on citizens' health and affects medical professionals, who find themselves having to defend their diagnoses as well as the treatments they propose against ill-informed patients. The propagation of these opinions follows the same pattern as the dissemination of fake news about other important topics, such as the environment, via social media networks, which we use as a testing ground for checking our procedure. In this article, we present an algorithm to analyse the behaviour of users of Twitter, the most important social network with respect to this issue, as well as a dynamic knowledge graph construction method based on information gathered from Twitter and other open data sources such as web pages. To show our methodology, we present a concrete example of how the associated graph structure of the tweets related to World Environment Day 2019 is used to develop a heuristic analysis of the validity of the information. The proposed analytical scheme is based on the interaction between the computer tool-a database implemented with Neo4j-and the analyst, who must ask the right questions to the tool, allowing to follow the line of any doubtful data. We also show how this method can be used. We also present some methodological guidelines on how our system could allow, in the future, an automation of the procedures for the construction of an autonomous algorithm for the detection of false news on the internet related to health. es_ES
dc.description.sponsorship The first-named and the forth-named authors were supported by the Spanish Ministry for Science, Innovation and Universities, the Spanish State Research Agency and the European Regional Development Fund under Research Grant SO2015-65594-C2-1R Y 2R, and to the Catedra de Transparencia y Gestion de Datos UPV/GVA. The third-named author was supported by the Spanish Ministry for Science, Innovation and Universities, the Spanish State Research Agency and the European Regional Development Fund under Research Grant MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Healthcare es_ES
dc.subject Environment es_ES
dc.subject Fake news es_ES
dc.subject Reinforcement learning es_ES
dc.subject Graph es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification BIBLIOTECONOMIA Y DOCUMENTACION es_ES
dc.title Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17031066 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CSO2015-65594-C2-1-R/ES/MODELOS PARA PUBLICAR, CONSUMIR Y MEDIR LA REUTILIZACION DE LOS DATOS DERIVADOS DE LA INVESTIGACION: MAS ALLA DE LAS FRONTERAS INSTITUCIONALES Y GEOGRAFICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CSO2015-65594-C2-2-R/ES/ODELOS PARA PUBLICAR, CONSUMIR Y MEDIR LA REUTILIZACION DE LOS DATOS DERIVADOS DE LA INVESTIGACION: MAS ALLA DE LAS FRONTERAS INSTITUCIONALES Y GEOGRAFICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art es_ES
dc.description.bibliographicCitation Lara-Navarra, P.; Falciani, H.; Sánchez Pérez, EA.; Ferrer Sapena, A. (2020). Information Management in Healthcare and Environment: Towards an Automatic System for Fake News Detection. International Journal of Environmental research and Public Health (Online). 17(3):1-12. https://doi.org/10.3390/ijerph17031066 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17031066 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32046238 es_ES
dc.identifier.pmcid PMC7037767 es_ES
dc.relation.pasarela S\423809 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Cátedra de Transparencia y Gestión de datos, Universitat Politècnica de València es_ES
dc.description.references Sato, A. P. S. (2018). What is the importance of vaccine hesitancy in the drop of vaccination coverage in Brazil? Revista de Saúde Pública, 52, 96. doi:10.11606/s1518-8787.2018052001199 es_ES
dc.description.references Los ministerios de Sanidad y Ciencia realizan un primer listado de 73 pseudoterapiashttp://www.rtve.es/noticias/20190228/ministerios-sanidad-ciencia-realizan-primer-listado-73-pseudoterapias/1892081.shtml es_ES
dc.description.references Psoriasis, lupus, alergia… Enfermedades autoinmunes crónicas, o no?https://tunaturopata.es/psoriasis-lupus-autoinmune-tratamiento-natural/ es_ES
dc.description.references Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., … Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. doi:10.1126/science.aao2998 es_ES
dc.description.references Zannettou, S., Sirivianos, M., Blackburn, J., & Kourtellis, N. (2019). The Web of False Information. Journal of Data and Information Quality, 11(3), 1-37. doi:10.1145/3309699 es_ES
dc.description.references McClain, C. R. (2017). Practices and promises of Facebook for science outreach: Becoming a «Nerd of Trust». PLOS Biology, 15(6), e2002020. doi:10.1371/journal.pbio.2002020 es_ES
dc.description.references Social-H2-2018-report Global Web Index Reporthttps://www.globalwebindex.com/reports/social es_ES
dc.description.references White Paper: Redefining Financial Risk and Compliance Practiceshttps://neo4j.com/whitepapers/financial-risk-reporting/ es_ES
dc.description.references Akoglu, L., Tong, H., & Koutra, D. (2014). Graph based anomaly detection and description: a survey. Data Mining and Knowledge Discovery, 29(3), 626-688. doi:10.1007/s10618-014-0365-y es_ES
dc.description.references Unsupervised Profiling Methods for Fraud Detection. Unpublishedhttps://www.semanticscholar.org/paper/Unsupervised-Profiling-Methods-for-Fraud-Detection-Bolton-Hand/5b640c367ae9cc4bd072006b05a3ed7c2d5f496d es_ES
dc.description.references Gao, X., Xiao, B., Tao, D., & Li, X. (2009). A survey of graph edit distance. Pattern Analysis and Applications, 13(1), 113-129. doi:10.1007/s10044-008-0141-y es_ES
dc.description.references Whiting, D. G., Hansen, J. V., McDonald, J. B., Albrecht, C., & Albrecht, W. S. (2012). MACHINE LEARNING METHODS FOR DETECTING PATTERNS OF MANAGEMENT FRAUD. Computational Intelligence, 28(4), 505-527. doi:10.1111/j.1467-8640.2012.00425.x es_ES
dc.description.references Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559-569. doi:10.1016/j.dss.2010.08.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem