Mostrar el registro sencillo del ítem
dc.contributor.author | Sechenyh, Vitaliy | es_ES |
dc.contributor.author | Duke, Daniel J. | es_ES |
dc.contributor.author | Swantek, Andrew B. | es_ES |
dc.contributor.author | Matusik, Katarzyna E. | es_ES |
dc.contributor.author | Kastengren, Alan L. | es_ES |
dc.contributor.author | Powell, Christopher F. | es_ES |
dc.contributor.author | Viera, Alberto | es_ES |
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Crua, Cyril | es_ES |
dc.date.accessioned | 2021-07-14T03:31:29Z | |
dc.date.available | 2021-07-14T03:31:29Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169185 | |
dc.description.abstract | [EN] Post-injection fuel dribble is known to lead to incomplete atomisation and combustion due to the release of slow-moving, and often surface-bound, liquid fuel after the end of injection. This can have a negative effect on engine emissions, performance and injector durability. To better quantify this phenomenon, we developed an image-processing approach to measure the volume of ligaments produced during the end of injection. We applied our processing approach to an Engine Combustion Network 'Spray B' 3-hole injector, using datasets from 220 injections generated by different research groups, to decouple the effect of gas temperature and pressure on the fuel dribble process. High-speed X-ray phase-contrast images obtained at room temperature conditions (297 K) at the Advanced Photon Source at Argonne National Laboratory, together with diffused back-illumination images captured at a wide range of temperature conditions (293-900 K) by CMT Motores Termicos were analysed and compared quantitatively. We found a good agreement between image sets obtained by Argonne National Laboratory and CMT Motores Termicos using different imaging techniques. The maximum dribble volume within the field of view of the imaging system and the mean rate of fuel dribble were considered as characteristic parameters of the fuel dribble process. Analysis showed that the absolute mean dribble rate increases with temperature when injection pressure is higher than 1000 bar and slightly decreases at high injection pressures (>500 bar) when temperature is close to 293 K. Larger maximum volumes of the fuel dribble were observed at lower gas temperatures (similar to 473 K) and low gas pressures (<30 bar), with a slight dependence on injection pressure. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The image processing research was supported by the United Kingdom's Engineering and Physical Science Research Council (Grants EP/K020528/1 and EP/M009424/1) and BP Formulated Products Technology. The X-ray measurements were performed at the Advanced Photon Source at Argonne National Laboratory. Use of the Advanced Photon Source (APS) is supported by the U.S. Department of Energy (DOE) under Contract No. DEAC02-06CH11357. The X-ray component of this research was partially funded by DOE's Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Diesel injector | es_ES |
dc.subject | Dribble | es_ES |
dc.subject | Ligament | es_ES |
dc.subject | Droplet shape | es_ES |
dc.subject | Atomization | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087419860955 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FK020528%2F1/GB/Investigation of Non-Spherical Droplets in High-Pressure Fuel Sprays/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FM009424%2F1/GB/Ultra Efficient Engines and Fuels/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Sechenyh, V.; Duke, DJ.; Swantek, AB.; Matusik, KE.; Kastengren, AL.; Powell, CF.; Viera, A.... (2020). Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays. International Journal of Engine Research. 21(1):43-54. https://doi.org/10.1177/1468087419860955 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087419860955 | es_ES |
dc.description.upvformatpinicio | 43 | es_ES |
dc.description.upvformatpfin | 54 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\400652 | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Örley, F., Hickel, S., Schmidt, S. J., & Adams, N. A. (2016). Large-Eddy Simulation of turbulent, cavitating fuel flow inside a 9-hole Diesel injector including needle movement. International Journal of Engine Research, 18(3), 195-211. doi:10.1177/1468087416643901 | es_ES |
dc.description.references | Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867 | es_ES |
dc.description.references | Moon, S., Huang, W., Li, Z., & Wang, J. (2016). End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy. Applied Energy, 179, 7-16. doi:10.1016/j.apenergy.2016.06.116 | es_ES |
dc.description.references | Kook, S., Pickett, L. M., & Musculus, M. P. B. (2009). Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession. SAE International Journal of Engines, 2(1), 1194-1210. doi:10.4271/2009-01-1356 | es_ES |
dc.description.references | Kastengren, A., Powell, C. F., Tilocco, F. Z., Liu, Z., Moon, S., Zhang, X., & Gao, J. (2012). End-of-Injection Behavior of Diesel Sprays Measured With X-Ray Radiography. Journal of Engineering for Gas Turbines and Power, 134(9). doi:10.1115/1.4006981 | es_ES |
dc.description.references | Manin, J., Bardi, M., Pickett, L. M., & Payri, R. (2016). Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level. International Journal of Multiphase Flow, 83, 267-278. doi:10.1016/j.ijmultiphaseflow.2015.12.001 | es_ES |
dc.description.references | Payri, R., Bracho, G., Marti-Aldaravi, P., & Viera, A. (2017). NEAR FIELD VISUALIZATION OF DIESEL SPRAY FOR DIFFERENT NOZZLE INCLINATION ANGLES IN NON-VAPORIZING CONDITIONS. Atomization and Sprays, 27(3), 251-267. doi:10.1615/atomizspr.2017017949 | es_ES |
dc.description.references | Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Manin, J., & Viera, A. (2016). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541-550. doi:10.1016/j.apenergy.2015.10.118 | es_ES |
dc.description.references | Duke, D. J., Matusik, K. E., Kastengren, A. L., Swantek, A. B., Sovis, N., Payri, R., … Powell, C. F. (2017). X-ray radiography of cavitation in a beryllium alloy nozzle. International Journal of Engine Research, 18(1-2), 39-50. doi:10.1177/1468087416685965 | es_ES |
dc.description.references | Duke, D., Swantek, A., Kastengren, A., Fezzaa, K., & Powell, C. (2015). Recent Developments in X-ray Diagnostics for Cavitation. SAE International Journal of Fuels and Lubricants, 8(1), 135-146. doi:10.4271/2015-01-0918 | es_ES |
dc.description.references | Walko, D. A., Adams, B. W., Doumy, G., Dufresne, E. M., Li, Y., March, A. M., … Zhu, Y. (2016). Developments in time-resolved x-ray research at APS beamline 7ID. doi:10.1063/1.4952871 | es_ES |
dc.description.references | Fessler, J. A., & Macovski, A. (1991). Object-based 3-D reconstruction of arterial trees from magnetic resonance angiograms. IEEE Transactions on Medical Imaging, 10(1), 25-39. doi:10.1109/42.75608 | es_ES |
dc.description.references | Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679-698. doi:10.1109/tpami.1986.4767851 | es_ES |
dc.description.references | Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642 | es_ES |
dc.description.references | Edelsbrunner, H., & Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1), 43-72. doi:10.1145/174462.156635 | es_ES |
dc.description.references | Lafarge, T., Pateiro-López, B., Possolo, A., & Dunkers, J. P. (2014). RImplementation of a Polyhedral Approximation to a 3D Set of Points Using theα-Shape. Journal of Statistical Software, 56(4). doi:10.18637/jss.v056.i04 | es_ES |
dc.description.references | Koci, C., Dempsey, A., Nudd, J., & Knier, B. (2017). Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods. SAE International Journal of Engines, 10(3), 1093-1109. doi:10.4271/2017-01-0703 | es_ES |