- -

Social and intelligent applications for future cities: Current advances

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Social and intelligent applications for future cities: Current advances

Show full item record

Sanchez-Anguix, V.; Chao, K.; Novais, P.; Boissier, O.; Julian Inglada, VJ. (2021). Social and intelligent applications for future cities: Current advances. Future Generation Computer Systems. 114:181-184. https://doi.org/10.1016/j.future.2020.07.055

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169191

Files in this item

Item Metadata

Title: Social and intelligent applications for future cities: Current advances
Author: Sanchez-Anguix, Víctor Chao, Kuo-Ming Novais, Paulo Boissier, Olivier Julian Inglada, Vicente Javier
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Cities face many challenges concerning their management, security, transportation, public health, the distribution of resources, sustainability, energy efficiency, and many more. As cities grow larger, it is only ...[+]
Subjects: Artificial intelligence , Smart cities , Social computing , Big data , Future cities
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Future Generation Computer Systems. (issn: 0167-739X )
DOI: 10.1016/j.future.2020.07.055
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.future.2020.07.055
Type: Artículo

References

Diez, C., Palanca, J., Sanchez-Anguix, V., Heras, S., Giret, A., & Julián, V. (2019). Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach. Energies, 12(4), 662. doi:10.3390/en12040662

Robu, V., Chalkiadakis, G., Kota, R., Rogers, A., & Jennings, N. R. (2016). Rewarding cooperative virtual power plant formation using scoring rules. Energy, 117, 19-28. doi:10.1016/j.energy.2016.10.077

Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1). doi:10.1186/s13174-015-0041-5 [+]
Diez, C., Palanca, J., Sanchez-Anguix, V., Heras, S., Giret, A., & Julián, V. (2019). Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach. Energies, 12(4), 662. doi:10.3390/en12040662

Robu, V., Chalkiadakis, G., Kota, R., Rogers, A., & Jennings, N. R. (2016). Rewarding cooperative virtual power plant formation using scoring rules. Energy, 117, 19-28. doi:10.1016/j.energy.2016.10.077

Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1). doi:10.1186/s13174-015-0041-5

Serrano, E., & Bajo, J. (2019). Deep neural network architectures for social services diagnosis in smart cities. Future Generation Computer Systems, 100, 122-131. doi:10.1016/j.future.2019.05.034

Wang, L., Zhen, H., Fang, X., Wan, S., Ding, W., & Guo, Y. (2019). A unified two-parallel-branch deep neural network for joint gland contour and segmentation learning. Future Generation Computer Systems, 100, 316-324. doi:10.1016/j.future.2019.05.035

Ojagh, S., Malek, M. R., Saeedi, S., & Liang, S. (2020). A location-based orientation-aware recommender system using IoT smart devices and Social Networks. Future Generation Computer Systems, 108, 97-118. doi:10.1016/j.future.2020.02.041

Jiao, X., Xiao, Y., Zheng, W., Wang, H., & Hsu, C.-H. (2019). A novel next new point-of-interest recommendation system based on simulated user travel decision-making process. Future Generation Computer Systems, 100, 982-993. doi:10.1016/j.future.2019.05.065

Hosseinpour, M., Malek, M. R., & Claramunt, C. (2019). Socio-spatial influence maximization in location-based social networks. Future Generation Computer Systems, 101, 304-314. doi:10.1016/j.future.2019.06.024

Palanca, J., Jordán, J., Bajo, J., & Botti, V. (2020). An energy-aware algorithm for electric vehicle infrastructures in smart cities. Future Generation Computer Systems, 108, 454-466. doi:10.1016/j.future.2020.03.001

Rodríguez, L., Palanca, J., del Val, E., & Rebollo, M. (2020). Analyzing urban mobility paths based on users’ activity in social networks. Future Generation Computer Systems, 102, 333-346. doi:10.1016/j.future.2019.07.072

Saberi, Z., Saberi, M., Hussain, O., & Chang, E. (2019). Stackelberg model based game theory approach for assortment and selling price planning for small scale online retailers. Future Generation Computer Systems, 100, 1088-1102. doi:10.1016/j.future.2019.05.066

Güngör, O., Akşanlı, B., & Aydoğan, R. (2019). Algorithm selection and combining multiple learners for residential energy prediction. Future Generation Computer Systems, 99, 391-400. doi:10.1016/j.future.2019.04.018

Luo, H., Cai, H., Yu, H., Sun, Y., Bi, Z., & Jiang, L. (2019). A short-term energy prediction system based on edge computing for smart city. Future Generation Computer Systems, 101, 444-457. doi:10.1016/j.future.2019.06.030

Levinger, C., Hazon, N., & Azaria, A. (2020). Human satisfaction as the ultimate goal in ridesharing. Future Generation Computer Systems, 112, 176-184. doi:10.1016/j.future.2020.05.028

Sánchez, A. J., Rodríguez, S., de la Prieta, F., & González, A. (2019). Adaptive interface ecosystems in smart cities control systems. Future Generation Computer Systems, 101, 605-620. doi:10.1016/j.future.2019.06.029

Aghili, S. F., Mala, H., Kaliyar, P., & Conti, M. (2019). SecLAP: Secure and lightweight RFID authentication protocol for Medical IoT. Future Generation Computer Systems, 101, 621-634. doi:10.1016/j.future.2019.07.004

Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodríguez-González, S., & Casado-Vara, R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems, 99, 278-294. doi:10.1016/j.future.2019.04.016

Liu, W., Guo, J., Yao, F., & Chen, D. (2020). Adaptive protocol generation for group collaborative in smart medical waste transportation. Future Generation Computer Systems, 110, 167-180. doi:10.1016/j.future.2020.04.003

De la Prieta, F., Rodríguez-González, S., Chamoso, P., Corchado, J. M., & Bajo, J. (2019). Survey of agent-based cloud computing applications. Future Generation Computer Systems, 100, 223-236. doi:10.1016/j.future.2019.04.037

Vahdat-Nejad, H., Asani, E., Mahmoodian, Z., & Mohseni, M. H. (2019). Context-aware computing for mobile crowd sensing: A survey. Future Generation Computer Systems, 99, 321-332. doi:10.1016/j.future.2019.04.052

Raza, M., Hussain, F. K., Hussain, O. K., Zhao, M., & Rehman, Z. ur. (2019). A comparative analysis of machine learning models for quality pillar assessment of SaaS services by multi-class text classification of users’ reviews. Future Generation Computer Systems, 101, 341-371. doi:10.1016/j.future.2019.06.022

Costa, D. G., & de Oliveira, F. P. (2020). A prioritization approach for optimization of multiple concurrent sensing applications in smart cities. Future Generation Computer Systems, 108, 228-243. doi:10.1016/j.future.2020.02.067

Ahuja, K., & Khosla, A. (2019). A novel framework for data acquisition and ubiquitous communication provisioning in smart cities. Future Generation Computer Systems, 101, 785-803. doi:10.1016/j.future.2019.07.029

Qin, P., & Guo, J. (2020). A novel machine natural language mediation for semantic document exchange in smart city. Future Generation Computer Systems, 102, 810-826. doi:10.1016/j.future.2019.07.028

Ma, S.-P., Fan, C.-Y., Chuang, Y., Liu, I.-H., & Lan, C.-W. (2019). Graph-based and scenario-driven microservice analysis, retrieval, and testing. Future Generation Computer Systems, 100, 724-735. doi:10.1016/j.future.2019.05.048

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record