- -

The cosmological constant of emergent spacetime in the Newtonian approximation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The cosmological constant of emergent spacetime in the Newtonian approximation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro-Palacio, J. C. es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Isidro, J.M. es_ES
dc.date.accessioned 2021-07-16T03:31:20Z
dc.date.available 2021-07-16T03:31:20Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0218-2718 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169342
dc.description.abstract [EN] We present a simple quantum-mechanical estimate of the cosmological constant of a Newtonian Universe. We first mimic the dynamics of a Newtonian spacetime by means of a nonrelativistic quantum mechanics for the matter contents of the Universe (baryonic and dark) within a fixed (i.e. nondynamical) Euclidean spacetime. Then we identify an operator that plays, on the matter states, a role analogous to that played by the cosmological constant. Finally, we prove that there exists a quantum state for the matter fields, in which the above-mentioned operator has an expectation value equal to the cosmological constant of the given Newtonian Universe. es_ES
dc.description.sponsorship This research was supported by grant no. RTI2018-102256-B-I00 (Spain). es_ES
dc.language Inglés es_ES
dc.publisher World Scientific es_ES
dc.relation.ispartof International Journal of Modern Physics D es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Emergent spacetime es_ES
dc.subject Cosmological constant es_ES
dc.subject Newtonian cosmology es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The cosmological constant of emergent spacetime in the Newtonian approximation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0218271820500935 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Castro-Palacio, JC.; Fernández De Córdoba, P.; Isidro, J. (2020). The cosmological constant of emergent spacetime in the Newtonian approximation. International Journal of Modern Physics D. 29(13):1-11. https://doi.org/10.1142/S0218271820500935 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1142/S0218271820500935 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\417004 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396. doi:10.1063/1.531249 es_ES
dc.description.references Padmanabhan, T. (2016). The atoms of space, gravity and the cosmological constant. International Journal of Modern Physics D, 25(07), 1630020. doi:10.1142/s0218271816300202 es_ES
dc.description.references Padmanabhan, T. (2017). The atoms of spacetime and the cosmological constant. Journal of Physics: Conference Series, 880, 012008. doi:10.1088/1742-6596/880/1/012008 es_ES
dc.description.references Cabrera, D., & Isidro, J. M. (2017). Boltzmann Entropy of a Newtonian Universe. Entropy, 19(5), 212. doi:10.3390/e19050212 es_ES
dc.description.references Isidro, J. (2018). On the Holographic Bound in Newtonian Cosmology. Entropy, 20(2), 83. doi:10.3390/e20020083 es_ES
dc.description.references Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4). doi:10.1007/jhep04(2011)029 es_ES
dc.description.references Astashenok, A. V., Elizalde, E., & Yurov, A. V. (2013). The cosmological constant as an eigenvalue of a Sturm-Liouville problem. Astrophysics and Space Science, 349(1), 25-32. doi:10.1007/s10509-013-1606-z es_ES
dc.description.references Barrow, J. D., & Shaw, D. J. (2011). The value of the cosmological constant. General Relativity and Gravitation, 43(10), 2555-2560. doi:10.1007/s10714-011-1199-1 es_ES
dc.description.references Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., … Tonry, J. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3), 1009-1038. doi:10.1086/300499 es_ES
dc.description.references Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3), 168-173. doi:10.1073/pnas.15.3.168 es_ES
dc.description.references Madelung, E. (1927). Quantentheorie in hydrodynamischer Form. Zeitschrift f�r Physik, 40(3-4), 322-326. doi:10.1007/bf01400372 es_ES
dc.description.references Cadoni, M., Casadio, R., Giusti, A., Mück, W., & Tuveri, M. (2018). Effective fluid description of the dark universe. Physics Letters B, 776, 242-248. doi:10.1016/j.physletb.2017.11.058 es_ES
dc.description.references Cadoni, M., Casadio, R., Giusti, A., & Tuveri, M. (2018). Emergence of a dark force in corpuscular gravity. Physical Review D, 97(4). doi:10.1103/physrevd.97.044047 es_ES
dc.description.references Elizalde, E., Odintsov, S. D., Romeo, A., Bytsenko, A. A., & Zerbini, S. (1994). Zeta Regularization Techniques with Applications. doi:10.1142/2065 es_ES
dc.description.references Blanchet, L., & Faye, G. (2000). Hadamard regularization. Journal of Mathematical Physics, 41(11), 7675-7714. doi:10.1063/1.1308506 es_ES
dc.description.references Finster, F., & Isidro, J. M. (2017). Lp-spectrum of the Schrödinger operator with inverted harmonic oscillator potential. Journal of Mathematical Physics, 58(9), 092104. doi:10.1063/1.4997418 es_ES
dc.description.references Rajeev, K., Chakraborty, S., & Padmanabhan, T. (2018). Inverting a normal harmonic oscillator: physical interpretation and applications. General Relativity and Gravitation, 50(9). doi:10.1007/s10714-018-2438-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem