Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa, A. J. | es_ES |
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Salvador, Francisco Javier | es_ES |
dc.contributor.author | Crialesi-Esposito, Marco | es_ES |
dc.date.accessioned | 2021-07-16T03:31:25Z | |
dc.date.available | 2021-07-16T03:31:25Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0301-9322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169344 | |
dc.description.abstract | [EN] Among the many unknowns in the study of atomizing sprays, defining an unambiguous way to analyze turbulence is, perhaps, one of the most limiting ones. The lack of proper tools for the analysis of the turbulence field (e.g. specific one/two-point statistics, spectrum, structure functions) limits the understanding of the overall phenomenon occurring, impeding the correct estimation of motion scales (from the Kolmogorov one to the integral one). The present work proposes a methodology to analyze the turbulence in atomizing jets using a pseudo-fluid method. The many challenges presented in these types of flows (such as temporal fluid properties uncertainties, strong anisotropy and lack of a priori chance of determining the motion scales) can be simplified by such a method, as it will be clearly shown by the smooth results obtained. Finally, the method is tested against the one-phase flows turbulent data available in the literature for the Kolmogorov scaling of the one-dimension energy spectra, showing how a pseudo-fluid method could provide a reliable tool to analyze multiphase turbulence, especially in spray's primary atomization. | es_ES |
dc.description.sponsorship | This research has been partially funded by Spanish Ministerio de Economia y Competitividad through project RTI2018-099706-B-100, "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta resolucion". Additionally, the authors thankfully acknowledge the computer resources at MareNostrum 4 (Barcelona Supercomputing Center) and their technical support provided by FI-2017-2-0035 and TITAN (Oak Ridge Leadership Computing Facility) in the frame of the project TUR124. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Multiphase Flow | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Energy spectra | es_ES |
dc.subject | Pseudo-fluid | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Primary atomization | es_ES |
dc.subject | Kolmogorov scale | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Study of turbulence in atomizing liquid jets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijmultiphaseflow.2020.103328 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Torregrosa, AJ.; Payri, R.; Salvador, FJ.; Crialesi-Esposito, M. (2020). Study of turbulence in atomizing liquid jets. International Journal of Multiphase Flow. 129:1-12. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 129 | es_ES |
dc.relation.pasarela | S\412730 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Agbaglah, G., Chiodi, R., & Desjardins, O. (2017). Numerical simulation of the initial destabilization of an air-blasted liquid layer. Journal of Fluid Mechanics, 812, 1024-1038. doi:10.1017/jfm.2016.835 | es_ES |
dc.description.references | Aliseda, A., Hopfinger, E. J., Lasheras, J. C., Kremer, D. M., Berchielli, A., & Connolly, E. K. (2008). Atomization of viscous and non-newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. International Journal of Multiphase Flow, 34(2), 161-175. doi:10.1016/j.ijmultiphaseflow.2007.09.003 | es_ES |
dc.description.references | Antonia, R. A., Anselmet, F., & Chambers, A. J. (1986). Assessment of local isotropy using measurements in a turbulent plane jet. Journal of Fluid Mechanics, 163, 365-391. doi:10.1017/s0022112086002331 | es_ES |
dc.description.references | Bassenne, M., Esmaily, M., Livescu, D., Moin, P., & Urzay, J. (2019). A dynamic spectrally enriched subgrid-scale model for preferential concentration in particle-laden turbulence. International Journal of Multiphase Flow, 116, 270-280. doi:10.1016/j.ijmultiphaseflow.2019.04.025 | es_ES |
dc.description.references | Brändle de Motta, J. C., Costa, P., Derksen, J. J., Peng, C., Wang, L.-P., Breugem, W.-P., … Renon, N. (2019). Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows. Computers & Fluids, 179, 1-14. doi:10.1016/j.compfluid.2018.10.016 | es_ES |
dc.description.references | Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104), 745-762. doi:10.1090/s0025-5718-1968-0242392-2 | es_ES |
dc.description.references | Comte-Bellot, G., & Corrsin, S. (1971). Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. Journal of Fluid Mechanics, 48(2), 273-337. doi:10.1017/s0022112071001599 | es_ES |
dc.description.references | Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 | es_ES |
dc.description.references | Pitsch, H., & Desjardins, O. (2010). DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS. Atomization and Sprays, 20(4), 311-336. doi:10.1615/atomizspr.v20.i4.40 | es_ES |
dc.description.references | Dodd, M. S., & Ferrante, A. (2016). On the interaction of Taylor length scale size droplets and isotropic turbulence. Journal of Fluid Mechanics, 806, 356-412. doi:10.1017/jfm.2016.550 | es_ES |
dc.description.references | Duret, B., Luret, G., Reveillon, J., Menard, T., Berlemont, A., & Demoulin, F. X. (2012). DNS analysis of turbulent mixing in two-phase flows. International Journal of Multiphase Flow, 40, 93-105. doi:10.1016/j.ijmultiphaseflow.2011.11.014 | es_ES |
dc.description.references | Elghobashi, S. (2019). Direct Numerical Simulation of Turbulent Flows Laden with Droplets or Bubbles. Annual Review of Fluid Mechanics, 51(1), 217-244. doi:10.1146/annurev-fluid-010518-040401 | es_ES |
dc.description.references | Gauding, M., Danaila, L., & Varea, E. (2018). One-point and two-point statistics of homogeneous isotropic decaying turbulence with variable viscosity. International Journal of Heat and Fluid Flow, 72, 143-150. doi:10.1016/j.ijheatfluidflow.2018.05.013 | es_ES |
dc.description.references | Gorokhovski, M., & Herrmann, M. (2008). Modeling Primary Atomization. Annual Review of Fluid Mechanics, 40(1), 343-366. doi:10.1146/annurev.fluid.40.111406.102200 | es_ES |
dc.description.references | Gréa, B.-J., Griffond, J., & Burlot, A. (2014). The effects of variable viscosity on the decay of homogeneous isotropic turbulence. Physics of Fluids, 26(3), 035104. doi:10.1063/1.4867893 | es_ES |
dc.description.references | Harris, V. G., Graham, J. A. H., & Corrsin, S. (1977). Further experiments in nearly homogeneous turbulent shear flow. Journal of Fluid Mechanics, 81(4), 657-687. doi:10.1017/s0022112077002286 | es_ES |
dc.description.references | Hasslberger, J., Ketterl, S., Klein, M., & Chakraborty, N. (2018). Flow topologies in primary atomization of liquid jets: a direct numerical simulation analysis. Journal of Fluid Mechanics, 859, 819-838. doi:10.1017/jfm.2018.845 | es_ES |
dc.description.references | Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1(3), 289-295. doi:10.1002/aic.690010303 | es_ES |
dc.description.references | Lasheras, J. C., & Hopfinger, E. J. (2000). Liquid Jet Instability and Atomization in a Coaxial Gas Stream. Annual Review of Fluid Mechanics, 32(1), 275-308. doi:10.1146/annurev.fluid.32.1.275 | es_ES |
dc.description.references | Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 | es_ES |
dc.description.references | Lee, K., Girimaji, S. S., & Kerimo, J. (2008). Validity of Taylor’s Dissipation-Viscosity Independence Postulate in Variable-Viscosity Turbulent Fluid Mixtures. Physical Review Letters, 101(7). doi:10.1103/physrevlett.101.074501 | es_ES |
dc.description.references | Ling, Y., Fuster, D., Zaleski, S., & Tryggvason, G. (2017). Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: A numerical closeup. Physical Review Fluids, 2(1). doi:10.1103/physrevfluids.2.014005 | es_ES |
dc.description.references | Ling, Y., Fuster, D., Tryggvason, G., & Zaleski, S. (2018). A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. Journal of Fluid Mechanics, 859, 268-307. doi:10.1017/jfm.2018.825 | es_ES |
dc.description.references | LUCCI, F., FERRANTE, A., & ELGHOBASHI, S. (2010). Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics, 650, 5-55. doi:10.1017/s0022112009994022 | es_ES |
dc.description.references | Manin, J. (2018). NUMERICAL INVESTIGATION OF THE PRIMARY BREAKUP REGION OF HIGH-PRESSURE SPRAYS. Atomization and Sprays, 28(12), 1081-1100. doi:10.1615/atomizspr.2019026990 | es_ES |
dc.description.references | MARMOTTANT, P., & VILLERMAUX, E. (2004). On spray formation. Journal of Fluid Mechanics, 498, 73-111. doi:10.1017/s0022112003006529 | es_ES |
dc.description.references | Park, G. I., Bassenne, M., Urzay, J., & Moin, P. (2017). A simple dynamic subgrid-scale model for LES of particle-laden turbulence. Physical Review Fluids, 2(4). doi:10.1103/physrevfluids.2.044301 | es_ES |
dc.description.references | Pope, S. B., 2001. Turbulent flows. | es_ES |
dc.description.references | Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 228(16), 5838-5866. doi:10.1016/j.jcp.2009.04.042 | es_ES |
dc.description.references | Prakash, V. N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D., & Sun, C. (2016). Energy spectra in turbulent bubbly flows. Journal of Fluid Mechanics, 791, 174-190. doi:10.1017/jfm.2016.49 | es_ES |
dc.description.references | Roghair, I., Mercado, J. M., Sint Annaland, M. V., Kuipers, H., Sun, C., & Lohse, D. (2011). Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments. International Journal of Multiphase Flow, 37(9), 1093-1098. doi:10.1016/j.ijmultiphaseflow.2011.07.004 | es_ES |
dc.description.references | Saddoughi, S. G., & Veeravalli, S. V. (1994). Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 268, 333-372. doi:10.1017/s0022112094001370 | es_ES |
dc.description.references | Salvador, F. J., S., R., Crialesi-Esposito, M., & Blanquer, I. (2018). Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation. International Journal of Multiphase Flow, 102, 49-63. doi:10.1016/j.ijmultiphaseflow.2018.01.019 | es_ES |
dc.description.references | Scardovelli, R., & Zaleski, S. (2003). Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. International Journal for Numerical Methods in Fluids, 41(3), 251-274. doi:10.1002/fld.431 | es_ES |
dc.description.references | Schmidt, O. T., Towne, A., Rigas, G., Colonius, T., & Brès, G. A. (2018). Spectral analysis of jet turbulence. Journal of Fluid Mechanics, 855, 953-982. doi:10.1017/jfm.2018.675 | es_ES |
dc.description.references | Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008 | es_ES |
dc.description.references | Uberoi, M. S. (1970). Turbulent Energy Balance and Spectra of the Axisymmetric Wake. Physics of Fluids, 13(9), 2205. doi:10.1063/1.1693225 | es_ES |
dc.description.references | Villermaux, E. (2007). Fragmentation. Annual Review of Fluid Mechanics, 39(1), 419-446. doi:10.1146/annurev.fluid.39.050905.110214 | es_ES |
dc.description.references | Wang, Y., & Bourouiba, L. (2018). Unsteady sheet fragmentation: droplet sizes and speeds. Journal of Fluid Mechanics, 848, 946-967. doi:10.1017/jfm.2018.359 | es_ES |
dc.description.references | Zandian, A., Sirignano, W. A., & Hussain, F. (2018). Understanding liquid-jet atomization cascades via vortex dynamics. Journal of Fluid Mechanics, 843, 293-354. doi:10.1017/jfm.2018.113 | es_ES |