- -

Study of turbulence in atomizing liquid jets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of turbulence in atomizing liquid jets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Payri, Raul es_ES
dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Crialesi-Esposito, Marco es_ES
dc.date.accessioned 2021-07-16T03:31:25Z
dc.date.available 2021-07-16T03:31:25Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0301-9322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169344
dc.description.abstract [EN] Among the many unknowns in the study of atomizing sprays, defining an unambiguous way to analyze turbulence is, perhaps, one of the most limiting ones. The lack of proper tools for the analysis of the turbulence field (e.g. specific one/two-point statistics, spectrum, structure functions) limits the understanding of the overall phenomenon occurring, impeding the correct estimation of motion scales (from the Kolmogorov one to the integral one). The present work proposes a methodology to analyze the turbulence in atomizing jets using a pseudo-fluid method. The many challenges presented in these types of flows (such as temporal fluid properties uncertainties, strong anisotropy and lack of a priori chance of determining the motion scales) can be simplified by such a method, as it will be clearly shown by the smooth results obtained. Finally, the method is tested against the one-phase flows turbulent data available in the literature for the Kolmogorov scaling of the one-dimension energy spectra, showing how a pseudo-fluid method could provide a reliable tool to analyze multiphase turbulence, especially in spray's primary atomization. es_ES
dc.description.sponsorship This research has been partially funded by Spanish Ministerio de Economia y Competitividad through project RTI2018-099706-B-100, "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta resolucion". Additionally, the authors thankfully acknowledge the computer resources at MareNostrum 4 (Barcelona Supercomputing Center) and their technical support provided by FI-2017-2-0035 and TITAN (Oak Ridge Leadership Computing Facility) in the frame of the project TUR124. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Multiphase Flow es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Energy spectra es_ES
dc.subject Pseudo-fluid es_ES
dc.subject Turbulence es_ES
dc.subject Primary atomization es_ES
dc.subject Kolmogorov scale es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Study of turbulence in atomizing liquid jets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijmultiphaseflow.2020.103328 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Payri, R.; Salvador, FJ.; Crialesi-Esposito, M. (2020). Study of turbulence in atomizing liquid jets. International Journal of Multiphase Flow. 129:1-12. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 129 es_ES
dc.relation.pasarela S\412730 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agbaglah, G., Chiodi, R., & Desjardins, O. (2017). Numerical simulation of the initial destabilization of an air-blasted liquid layer. Journal of Fluid Mechanics, 812, 1024-1038. doi:10.1017/jfm.2016.835 es_ES
dc.description.references Aliseda, A., Hopfinger, E. J., Lasheras, J. C., Kremer, D. M., Berchielli, A., & Connolly, E. K. (2008). Atomization of viscous and non-newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. International Journal of Multiphase Flow, 34(2), 161-175. doi:10.1016/j.ijmultiphaseflow.2007.09.003 es_ES
dc.description.references Antonia, R. A., Anselmet, F., & Chambers, A. J. (1986). Assessment of local isotropy using measurements in a turbulent plane jet. Journal of Fluid Mechanics, 163, 365-391. doi:10.1017/s0022112086002331 es_ES
dc.description.references Bassenne, M., Esmaily, M., Livescu, D., Moin, P., & Urzay, J. (2019). A dynamic spectrally enriched subgrid-scale model for preferential concentration in particle-laden turbulence. International Journal of Multiphase Flow, 116, 270-280. doi:10.1016/j.ijmultiphaseflow.2019.04.025 es_ES
dc.description.references Brändle de Motta, J. C., Costa, P., Derksen, J. J., Peng, C., Wang, L.-P., Breugem, W.-P., … Renon, N. (2019). Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows. Computers & Fluids, 179, 1-14. doi:10.1016/j.compfluid.2018.10.016 es_ES
dc.description.references Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104), 745-762. doi:10.1090/s0025-5718-1968-0242392-2 es_ES
dc.description.references Comte-Bellot, G., & Corrsin, S. (1971). Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. Journal of Fluid Mechanics, 48(2), 273-337. doi:10.1017/s0022112071001599 es_ES
dc.description.references Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 es_ES
dc.description.references Pitsch, H., & Desjardins, O. (2010). DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS. Atomization and Sprays, 20(4), 311-336. doi:10.1615/atomizspr.v20.i4.40 es_ES
dc.description.references Dodd, M. S., & Ferrante, A. (2016). On the interaction of Taylor length scale size droplets and isotropic turbulence. Journal of Fluid Mechanics, 806, 356-412. doi:10.1017/jfm.2016.550 es_ES
dc.description.references Duret, B., Luret, G., Reveillon, J., Menard, T., Berlemont, A., & Demoulin, F. X. (2012). DNS analysis of turbulent mixing in two-phase flows. International Journal of Multiphase Flow, 40, 93-105. doi:10.1016/j.ijmultiphaseflow.2011.11.014 es_ES
dc.description.references Elghobashi, S. (2019). Direct Numerical Simulation of Turbulent Flows Laden with Droplets or Bubbles. Annual Review of Fluid Mechanics, 51(1), 217-244. doi:10.1146/annurev-fluid-010518-040401 es_ES
dc.description.references Gauding, M., Danaila, L., & Varea, E. (2018). One-point and two-point statistics of homogeneous isotropic decaying turbulence with variable viscosity. International Journal of Heat and Fluid Flow, 72, 143-150. doi:10.1016/j.ijheatfluidflow.2018.05.013 es_ES
dc.description.references Gorokhovski, M., & Herrmann, M. (2008). Modeling Primary Atomization. Annual Review of Fluid Mechanics, 40(1), 343-366. doi:10.1146/annurev.fluid.40.111406.102200 es_ES
dc.description.references Gréa, B.-J., Griffond, J., & Burlot, A. (2014). The effects of variable viscosity on the decay of homogeneous isotropic turbulence. Physics of Fluids, 26(3), 035104. doi:10.1063/1.4867893 es_ES
dc.description.references Harris, V. G., Graham, J. A. H., & Corrsin, S. (1977). Further experiments in nearly homogeneous turbulent shear flow. Journal of Fluid Mechanics, 81(4), 657-687. doi:10.1017/s0022112077002286 es_ES
dc.description.references Hasslberger, J., Ketterl, S., Klein, M., & Chakraborty, N. (2018). Flow topologies in primary atomization of liquid jets: a direct numerical simulation analysis. Journal of Fluid Mechanics, 859, 819-838. doi:10.1017/jfm.2018.845 es_ES
dc.description.references Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE Journal, 1(3), 289-295. doi:10.1002/aic.690010303 es_ES
dc.description.references Lasheras, J. C., & Hopfinger, E. J. (2000). Liquid Jet Instability and Atomization in a Coaxial Gas Stream. Annual Review of Fluid Mechanics, 32(1), 275-308. doi:10.1146/annurev.fluid.32.1.275 es_ES
dc.description.references Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 es_ES
dc.description.references Lee, K., Girimaji, S. S., & Kerimo, J. (2008). Validity of Taylor’s Dissipation-Viscosity Independence Postulate in Variable-Viscosity Turbulent Fluid Mixtures. Physical Review Letters, 101(7). doi:10.1103/physrevlett.101.074501 es_ES
dc.description.references Ling, Y., Fuster, D., Zaleski, S., & Tryggvason, G. (2017). Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: A numerical closeup. Physical Review Fluids, 2(1). doi:10.1103/physrevfluids.2.014005 es_ES
dc.description.references Ling, Y., Fuster, D., Tryggvason, G., & Zaleski, S. (2018). A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. Journal of Fluid Mechanics, 859, 268-307. doi:10.1017/jfm.2018.825 es_ES
dc.description.references LUCCI, F., FERRANTE, A., & ELGHOBASHI, S. (2010). Modulation of isotropic turbulence by particles of Taylor length-scale size. Journal of Fluid Mechanics, 650, 5-55. doi:10.1017/s0022112009994022 es_ES
dc.description.references Manin, J. (2018). NUMERICAL INVESTIGATION OF THE PRIMARY BREAKUP REGION OF HIGH-PRESSURE SPRAYS. Atomization and Sprays, 28(12), 1081-1100. doi:10.1615/atomizspr.2019026990 es_ES
dc.description.references MARMOTTANT, P., & VILLERMAUX, E. (2004). On spray formation. Journal of Fluid Mechanics, 498, 73-111. doi:10.1017/s0022112003006529 es_ES
dc.description.references Park, G. I., Bassenne, M., Urzay, J., & Moin, P. (2017). A simple dynamic subgrid-scale model for LES of particle-laden turbulence. Physical Review Fluids, 2(4). doi:10.1103/physrevfluids.2.044301 es_ES
dc.description.references Pope, S. B., 2001. Turbulent flows. es_ES
dc.description.references Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 228(16), 5838-5866. doi:10.1016/j.jcp.2009.04.042 es_ES
dc.description.references Prakash, V. N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D., & Sun, C. (2016). Energy spectra in turbulent bubbly flows. Journal of Fluid Mechanics, 791, 174-190. doi:10.1017/jfm.2016.49 es_ES
dc.description.references Roghair, I., Mercado, J. M., Sint Annaland, M. V., Kuipers, H., Sun, C., & Lohse, D. (2011). Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments. International Journal of Multiphase Flow, 37(9), 1093-1098. doi:10.1016/j.ijmultiphaseflow.2011.07.004 es_ES
dc.description.references Saddoughi, S. G., & Veeravalli, S. V. (1994). Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 268, 333-372. doi:10.1017/s0022112094001370 es_ES
dc.description.references Salvador, F. J., S., R., Crialesi-Esposito, M., & Blanquer, I. (2018). Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation. International Journal of Multiphase Flow, 102, 49-63. doi:10.1016/j.ijmultiphaseflow.2018.01.019 es_ES
dc.description.references Scardovelli, R., & Zaleski, S. (2003). Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. International Journal for Numerical Methods in Fluids, 41(3), 251-274. doi:10.1002/fld.431 es_ES
dc.description.references Schmidt, O. T., Towne, A., Rigas, G., Colonius, T., & Brès, G. A. (2018). Spectral analysis of jet turbulence. Journal of Fluid Mechanics, 855, 953-982. doi:10.1017/jfm.2018.675 es_ES
dc.description.references Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008 es_ES
dc.description.references Uberoi, M. S. (1970). Turbulent Energy Balance and Spectra of the Axisymmetric Wake. Physics of Fluids, 13(9), 2205. doi:10.1063/1.1693225 es_ES
dc.description.references Villermaux, E. (2007). Fragmentation. Annual Review of Fluid Mechanics, 39(1), 419-446. doi:10.1146/annurev.fluid.39.050905.110214 es_ES
dc.description.references Wang, Y., & Bourouiba, L. (2018). Unsteady sheet fragmentation: droplet sizes and speeds. Journal of Fluid Mechanics, 848, 946-967. doi:10.1017/jfm.2018.359 es_ES
dc.description.references Zandian, A., Sirignano, W. A., & Hussain, F. (2018). Understanding liquid-jet atomization cascades via vortex dynamics. Journal of Fluid Mechanics, 843, 293-354. doi:10.1017/jfm.2018.113 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem