- -

Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Patrucco, Giacomo es_ES
dc.contributor.author Setragno, Francesco es_ES
dc.date.accessioned 2021-07-16T08:05:42Z
dc.date.available 2021-07-16T08:05:42Z
dc.date.issued 2021-07-14
dc.identifier.uri http://hdl.handle.net/10251/169360
dc.description.abstract [EN] Digitisation processes of movable heritage are becoming increasingly popular to document the artworks stored in our museums. An increasing number of strategies for the three-dimensional (3D) acquisition and modelling of these invaluable assets have been developed in the last few years, to efficiently respond to this documentation need and contribute to deepening the knowledge of the masterpieces investigated constantly by researchers operating in many fieldworks. Nowadays, one of the most effective solutions is represented by the development of image-based techniques, usually connected to a Structure-from-Motion (SfM) photogrammetric approach. However, while the acquisition of the images is relatively rapid, it is the processes connected to the data processing that are very time-consuming and require substantial manual involvement of the operator. The development of deep learning-based strategies can be an effective solution to enhance the level of automatism. In the case of the current research, which has been carried out in the framework of the digitisation of a collection of wooden maquettes stored in the ‘Museo Egizio di Torino’ using a photogrammetric approach, an automatic masking strategy using deep learning techniques is proposed, to increase the level of automatism and therefore, optimise the photogrammetric pipeline. Starting from a manually annotated dataset a neural network has been trained to automatically perform a semantic classification with the aim to isolate the maquettes from the background. The proposed methodology has allowed obtaining automatically segmented masks with a high degree of accuracy. The followed workflow is described (as regards acquisition strategies, dataset processing, and neural network training), and the accuracy of the results is evaluated and discussed. In addition, the possibility of performing a multiclass segmentation on the digital images to recognise different categories of objects in the images and define a semantic hierarchy is proposed to perform automatic classification of different elements in the acquired images. es_ES
dc.description.abstract [ES] Los procesos de digitalización del patrimonio mueble son cada vez más populares para documentar las obras de arte almacenadas en nuestros museos. En los últimos años se han desarrollado un número creciente de estrategias de adquisición y modelado tridimensional (3D) de estos activos de valor incalculable, que responden de manera eficiente a esta necesidad de documentación y contribuyen a profundizar en el conocimiento de las obras maestras investigadas constantemente por investigadores que operan en muchos trabajos de campo. Hoy en día, una de las soluciones más efectivas está relacionada con el desarrollo de técnicas basadas en imágenes, generalmente conectadas a un enfoque fotogramétrico de estructura-y-movimiento (SfM). Sin embargo, si bien la adquisición de las imágenes es relativamente rápida, son los procesos relacionados con el procesamiento de los datos los que consumen mucho tiempo y requieren una participación manual sustancial del operador. El desarrollo de estrategias basadas en el aprendizaje profundo puede ser una solución eficaz para mejorar el nivel de automatismo. En el caso de la presente investigación, que se ha llevado a cabo en el marco de la digitalización de una colección de maquetas de madera almacenadas en el 'Museo Egizio di Torino' mediante un enfoque fotogramétrico, se propone una estrategia de enmascaramiento automático mediante técnicas de aprendizaje profundo, que incrementa el nivel de automatismo y por tanto optimiza el flujo fotogramétrico. A partir de un conjunto de datos anotados manualmente, se ha entrenado una red neuronal que realiza automáticamente una clasificación semántica con el objetivo de aislar las maquetas del fondo. La metodología propuesta ha permitido obtener más caras segmentadas automáticamente con alto grado de precisión. Se describe el flujo de trabajo seguido (en cuanto a estrategias de toma, procesamiento del conjuntos de datos y entrenamiento de las redes neuronales), y se evalúa y discute la precisión de los resultados. Además, se propone la posibilidad de realizar una segmentación multiclase sobre las imágenes digitales que permitan reconocer diferentes categorías de objetos en las imágenes y definir una jerarquía semántica que clasifique automáticamente diferentes elementos en la toma de las imágenes. es_ES
dc.description.sponsorship The authors thank Volta® A.I. (and in particular Silvio Revelli) for the contribution to this work and for providing high-end hardware for neural network training. In addition, they would like to thank Alessia Fassone of Museo Egizio di Torino and all the people involved in the B.A.C.K. TO T.H.E. F.U.T.U.RE. project (in particular, Fulvio Rinaudo, who coordinated the Geomatic team). Finally, they wish to express their gratitude to Nannina Spanò and Filiberto Chiabrando for the helpful confrontation during the presented research. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Virtual Archaeology Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Close-range photogrammetry es_ES
dc.subject Deep learning es_ES
dc.subject Semantic segmentation es_ES
dc.subject Automatic masking es_ES
dc.subject Movable heritage es_ES
dc.subject Cultural heritage documentation es_ES
dc.subject Fotogrametría de objeto cercano es_ES
dc.subject Aprendizaje profundo es_ES
dc.subject Segmentación semántica es_ES
dc.subject Enmascaramiento automático es_ES
dc.subject Patrimonio mueble es_ES
dc.subject Documentación del patrimonio cultural es_ES
dc.title Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques es_ES
dc.title.alternative Segmentación semántica multiclase en la digitalización del patrimonio mueble utilizando técnicas de aprendizaje profundo es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/var.2021.15329
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Patrucco, G.; Setragno, F. (2021). Multiclass semantic segmentation for digitisation of movable heritage using deep learning techniques. Virtual Archaeology Review. 12(25):85-98. https://doi.org/10.4995/var.2021.15329 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2021.15329 es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 25 es_ES
dc.identifier.eissn 1989-9947
dc.relation.pasarela OJS\15329 es_ES
dc.description.references Adami, A., Balletti, C., Fassi, F., Fregonese, L., Guerra, F., Taffurelli, L., Vernier, P. (2015). The bust of Francesco II Gonzaga: From digital documentation to 3D printing. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W3, 9-15. https://doi.org/10.5194/isprsannals-II-5-W3-9-2015 es_ES
dc.description.references Badrinarayanan, V., Kendall, A., Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615 es_ES
dc.description.references Balletti, C., Ballarin, M., & Guerra, F. (2017). 3D printing: state of the art and future perspectives. Journal of Cultural Heritage, 26,172-182. https://doi.org/10.1016/j.culher.2017.02.010 es_ES
dc.description.references Balletti, C., & Ballarin, M. (2019). An application of integrated 3D technologies for replicas in Cultural Heritage. International Journal of Geo-Information, 8(6), 285. https://doi.org/10.3390/ijgi8060285 es_ES
dc.description.references Barbieri, L., Bruno, F., & Muzzupappa, M. (2018). User-centered design of a virtual reality exhibit for archaeological museums. International Journal on Interactive Design and Manufacturing (IJIDeM), 12, 561-571. https://doi.org/10.1007/s12008-017-0414-z es_ES
dc.description.references Caruana, R., Lawrence, S., & Giles, C. L. (2001). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems (pp. 402-408). https://doi.org/10.1109/IJCNN.2000.857823 es_ES
dc.description.references Cermelli, F., Mancini, M., Bulo, S. R., Ricci, E., & Caputo, B. (2020). Modeling the background for incremental learning in semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9233-9242. https://doi.org/10.1109/CVPR42600.2020.00925 es_ES
dc.description.references Condorelli, F., Rinaudo, F., Salvadore, F., & Tagliaventi, S. (2020). A neural network approach to detecting lost heritage in historical video. International Journal of Geo-Information, 9(5), 297. https://doi.org/10.3390/ijgi9050297 es_ES
dc.description.references Chiabrando, F., Sammartano, G., Spanò, A., & Spreafico, A. (2019). Hybrid 3D models: When Geomatics innovations meet extensive built heritage complexes. International Journal of Geo-Information, 8(3), 124. https://doi.org/10.3390/ijgi8030124 es_ES
dc.description.references Dall'Asta, E., Bruno, N., Bigliardi, G., Zerbi, A., & Roncella, R. es_ES
dc.description.references (2016). Photogrammetric techniques for promotion of archaeological Heritage: the Archaeological Museum of Parma (Italy). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5, 243-250. https://doi.org/10.5194/isprs-archives-XLI-B5-243-2016 es_ES
dc.description.references Felicetti, A., Paolanti, M., Zingaretti, P., Pierdicca, R., & Malinverni, E. S. (2020). Mo.Se.: Mosaic image segmentation based on deep cascading learning. Virtual Archaeology Review, 12(24), 25-38. https://doi.org/10.4995/var.2021.14179 es_ES
dc.description.references Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., & James, S. (2020). Machine Learning for Cultural Heritage: A Survey. Pattern Recognition Letters, 133, 102-108. https://doi.org/10.1016/j.patrec.2020.02.017 es_ES
dc.description.references Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., & Garcia-Rodriguez, J. (2017). A survey on deep learning techniques for image and video semantic segmentation. Applied Soft Computing, 70, 41-65. https://doi.org/10.1016/j.asoc.2018.05.018 es_ES
dc.description.references George, D., Xie, X., & Tam, G. K. (2018). 3D mesh segmentation via multi-branch 1D convolutional neural networks. Graphical Models, 96, 1-10. https://doi.org/10.1016/j.gmod.2018.01.001 es_ES
dc.description.references Giuffrida, D., Mollica Nardo, V., Giacobello, F., Adinolfi, O., Mastelloni, M. A., Toscano, G., & Ponterio, R. S. (2019). Combined 3D surveying and Raman Spectroscopy Techniques on artifacts preserved at Archaeological Musem of Lipari. Heritage, 2(3), 2017-2027. https://doi.org/10.3390/heritage2030121 es_ES
dc.description.references Grilli, E., Farella, E. M., Torresani, A., & Remondino, F. (2019). Geometric features analysis for the classification of Cultural Heritage point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 541-548. https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019 es_ES
dc.description.references Grilli, E., Özdemir, E., & Remondino, F. (2019). Application of machine and deep learning strategies for the classification of Heritage point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, 447-454. https://doi.org/10.5194/isprs-archives-XLII-4-W18-447-2019 es_ES
dc.description.references Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. es_ES
dc.description.references Gu, J., Wang, Z., Kuen, J., Ma., L., Shahroudy, A., Shuai, B., & Chen., T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013 es_ES
dc.description.references Guidi, G., Malik, U. S., Frischer, B., Barandoni, C., & Paolucci, F. (2017). The Indiana University-Uffizi project: Metrological challenges and workflow for massive 3D digitization of sculptures. 23rd International Conference on Virtual System & Multimedia (VSMM), 1-8. https://doi.org/10.1109/VSMM.2017.8346268 es_ES
dc.description.references He, T., Shen, C., Tian, Z., Gong, D., Sun, C., & Yan, Y. (2019). Knowledge adaptation for efficient semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 578-587. https://doi.org/10.1109/CVPR.2019.00067 es_ES
dc.description.references Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 11-19). https://doi.org/10.1109/CVPRW.2017.156 es_ES
dc.description.references Kersten, T. P., Tschirschwitz, F., & Deggim, S. (2017). Development of a virtual museum including a 4D presentation of building history in Virtual Reality. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 361-367. https://doi.org/10.5194/isprs-archives-XLII-2-W3-361-2017 es_ES
dc.description.references Knyaz, A. V., Kniaz, V. V., Remondino, F., Zheltov, S. Y., & Gruen, A. (2020). 3D reconstruction of a complex grid structure combining UAS images and deep learning. Remote Sensing, 12(19), 3128. https://doi.org/10.3390/rs12193128 es_ES
dc.description.references Lin, P., Sun, P., Cheng, G., Xie, S., Li, X., & Shi, J. (2020). Graph-guided architecture search for real-time semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4203-4212. https://doi.org/10.1109/CVPR42600.2020.00426 es_ES
dc.description.references Llamas, J., Lerones, P. M., Medina, R., Zalama, E., & Gómez-García-Bermejo, J. (2017). Classification of architectural heritage images using deep learning techniques. Applied Science, 7(10), 992. https://doi.org/10.3390/app7100992 es_ES
dc.description.references Lo Turco, M., Piumatti, P., Rinaudo, F., Tamborrino, R., & González-Aguilera, D., (2018). B.A.C.K. TO T.H.E. F.U.T.U.RE. − BIM acquisition as cultural key to transfer heritage of ancient Egypt for many uses to many users replayed. In S. Bertocci (Ed.), Programmi Multidisciplinari Per L'internazionalizzazione Della Ricerca. Patrimonio Culturale, Architettura e Paesaggio (pp. 107-109). DIDA Press. es_ES
dc.description.references Lo Turco, M., Piumatti, P., Rinaudo, F., Calvano, M., Spreafico, A., & Patrucco, G. (2018). The digitisation of museum collections for research, management and enhancement of tangible and intangible heritage. 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), San Francisco, CA, USA. https://doi.org/10.1109/DigitalHeritage.2018.8810128 es_ES
dc.description.references Mafrici, N., & Giovannini, E. C. (2020). Digitalizing data: From the historical research to data modelling for a (digital) collection documentation. In M. Lo Turco, E. C. Giovannini, , & N. Mafrici (Eds.), Digital & Documentation. Digital Strategies for Cultural Heritage (Vol. 2, pp. 38-51). Pavia University Press. https://doi.org/10.5194/isprs-archives-XLII-2-W15-519-2019 es_ES
dc.description.references Malik, U. S., Guidi, G. (2018). Massive 3D digitization of sculptures: Methodological approaches for improving efficiency. IOP Conference Series: Material Science and Engineering, 364. https://doi.org/10.1088/1757-899X/364/1/012015 es_ES
dc.description.references Minto, S., & Remondino, F. (2014). Online access and sharing of reality-based 3D models. SCIRES-IT-SCIentific RESearch and Information Technology, 4(2), 17-28. http://doi.org/10.2423/i22394303v4n2p17 es_ES
dc.description.references Patrucco, G., Chiabrando, F., Dondi, P, & Malagodi, M. (2018). Image and range-based 3D acquisition and modeling of popular musical instruments. Proceedings from the Document Academy, 5(2), 9. https://doi.org/10.35492/docam/5/2/9 es_ES
dc.description.references Patrucco, G., Rinaudo, F., & Spreafico, A. (2019). A new handheld scanner for 3D survey of small artifacts: The Stonex F6. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 895-901. https://doi.org/10.5194/isprs-archives-XLII-2-W15-895-2019 es_ES
dc.description.references Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, C., Malinverni, E. S., Frontoni, E., & Lingua, A. M. (2020). Point cloud semantic segmentation using a deep learning framework for Cultural Heritage. Remote Sensing, 12(6), 1005. https://doi.org/10.3390/rs12061005 es_ES
dc.description.references Salvador-García, E., Viñals, M. J., & García-Valldecabres, J. L. (2020). Potential of HBIM to improve the efficiency of visitor flow management in Heritage sites. Towards smart heritage management. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIV-M-1-2020, 451-456. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-451-2020 es_ES
dc.description.references Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0 es_ES
dc.description.references Stathopoulou, E. K., & Remondino, F. (2019). Semantic photogrammetry: Boosting image-based 3D reconstruction with semantic labeling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 685-690. https://doi.org/10.5194/isprs-archives-XLII-2-W9-685-2019 es_ES
dc.description.references UNESCO. (1979). Recommendation for the Protection of Movable Cultural Property, Records of the General Conference, 20th Session, I: Resolutions. Paris: UNESCO. es_ES
dc.description.references Vargas, R., Mosavi, A., & Ruiz, R. (2018). Deep learning: A review. Advances in Intelligent Systems and Computing, 29(8), 232-244. https://doi.org/10.20944/PREPRINTS201810.0218.V1 es_ES
dc.description.references Yazan, E., & Talu, M. F. (2017). Comparison of the stochastic gradient descent based optimization techniques. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1-5. https://doi.org/10.1109/IDAP.2017.8090299 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem