Mostrar el registro sencillo del ítem
dc.contributor.author | Liao, Zhiqiang | es_ES |
dc.contributor.author | Liao, Huchang | es_ES |
dc.contributor.author | Tang, Ming | es_ES |
dc.contributor.author | Al-Barakati, Abdullah | es_ES |
dc.contributor.author | Llopis-Albert, Carlos | es_ES |
dc.date.accessioned | 2021-07-17T03:34:40Z | |
dc.date.available | 2021-07-17T03:34:40Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1566-2535 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169417 | |
dc.description.abstract | [EN] With the rapid development of higher business education, higher business education evaluation has attracted considerable attention of researchers and practitioners. The higher business education evaluation is an essential part of the development of a business school, which has a direct impact on its resource distribution. The higher business education evaluation can be considered as a multiple criteria group decision making (MCGDM) problem that involves a group of experts. Due to the complexity of the decision-making problem, decision criteria are not fully independent to each other, and the assumption of complete rationality of experts is usually invalid in many situations. In this paper, we propose a Choquet integral-based hesitant fuzzy gained and lost dominance score method to address the two important issues regarding the interactions among criteria and the behavior preference characteristics of experts in MCGDM problems. Firstly, a comprehensive distance measure of hesitant fuzzy sets is introduced by considering the relative importance of two separations. Then, a Choquet integral-based hesitant fuzzy gained and lost dominance score method based on the prospect theory is proposed to address the MCGDM problems in which experts make decision with the risk preference psychology. Finally, an illustrative example of higher business education evaluation is provided to demonstrate the applicability of the proposed method, and the sensitivity and comparative analysis are also completed to verify the validity of the proposed method. | es_ES |
dc.description.sponsorship | The work was supported by the National Natural Science Foundation of China (71771156) and the 2019 Soft Science Project of Sichuan Science and Technology Department (No. 2019JDR0141). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Information Fusion | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Multiple criteria group decision making | es_ES |
dc.subject | Hesitant fuzzy set | es_ES |
dc.subject | Gained and lost dominance score method | es_ES |
dc.subject | Choquet integral | es_ES |
dc.subject | Prospect theory | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | A Choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: Case study of higher business education evaluation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.inffus.2020.05.003 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SPDST//2019JDR0141/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//71771156/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Liao, Z.; Liao, H.; Tang, M.; Al-Barakati, A.; Llopis-Albert, C. (2020). A Choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: Case study of higher business education evaluation. Information Fusion. 62:121-133. https://doi.org/10.1016/j.inffus.2020.05.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.inffus.2020.05.003 | es_ES |
dc.description.upvformatpinicio | 121 | es_ES |
dc.description.upvformatpfin | 133 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.relation.pasarela | S\413911 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Department of Science and Technology of Sichuan Province | es_ES |
dc.description.references | Aggarwal, M., & Fallah Tehrani, A. (2019). Modelling Human Decision Behaviour with Preference Learning. INFORMS Journal on Computing, 31(2), 318-334. doi:10.1287/ijoc.2018.0823 | es_ES |
dc.description.references | Angilella, S., Corrente, S., Greco, S., & Słowiński, R. (2016). Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega, 63, 154-169. doi:10.1016/j.omega.2015.10.010 | es_ES |
dc.description.references | Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., & Torra, V. (2014). Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. Information Sciences, 255, 82-99. doi:10.1016/j.ins.2013.08.024 | es_ES |
dc.description.references | Bottero, M., Ferretti, V., Figueira, J. R., Greco, S., & Roy, B. (2018). On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application. European Journal of Operational Research, 271(1), 120-140. doi:10.1016/j.ejor.2018.04.022 | es_ES |
dc.description.references | Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedregal, B., … De Baets, B. (2016). A Historical Account of Types of Fuzzy Sets and Their Relationships. IEEE Transactions on Fuzzy Systems, 24(1), 179-194. doi:10.1109/tfuzz.2015.2451692 | es_ES |
dc.description.references | Bustince, H., Fernandez, J., Kolesárová, A., & Mesiar, R. (2013). Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems, 220, 69-77. doi:10.1016/j.fss.2012.07.015 | es_ES |
dc.description.references | Chen, Z.-S., Chin, K.-S., Li, Y.-L., & Yang, Y. (2016). Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Information Sciences, 357, 61-87. doi:10.1016/j.ins.2016.04.006 | es_ES |
dc.description.references | CHIOU, H., TZENG, G., & CHENG, D. (2005). Evaluating sustainable fishing development strategies using fuzzy MCDM approach. Omega, 33(3), 223-234. doi:10.1016/j.omega.2004.04.011 | es_ES |
dc.description.references | Choquet, G. (1954). Theory of capacities. Annales de l’institut Fourier, 5, 131-295. doi:10.5802/aif.53 | es_ES |
dc.description.references | Corrente, S., Figueira, J. R., Greco, S., & Słowiński, R. (2017). A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. Omega, 73, 1-17. doi:10.1016/j.omega.2016.11.008 | es_ES |
dc.description.references | Fu, Z., Wu, X., Liao, H., & Herrera, F. (2018). Underground Mining Method Selection With the Hesitant Fuzzy Linguistic Gained and Lost Dominance Score Method. IEEE Access, 6, 66442-66458. doi:10.1109/access.2018.2878784 | es_ES |
dc.description.references | Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research, 89(3), 445-456. doi:10.1016/0377-2217(95)00176-x | es_ES |
dc.description.references | Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92(2), 167-189. doi:10.1016/s0165-0114(97)00168-1 | es_ES |
dc.description.references | Jin, L., Kalina, M., Mesiar, R., & Borkotokey, S. (2018). Discrete Choquet Integrals for Riemann Integrable Inputs With Some Applications. IEEE Transactions on Fuzzy Systems, 26(5), 3164-3169. doi:10.1109/tfuzz.2018.2792458 | es_ES |
dc.description.references | Joshi, D., & Kumar, S. (2016). Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. European Journal of Operational Research, 248(1), 183-191. doi:10.1016/j.ejor.2015.06.047 | es_ES |
dc.description.references | Kabak, M., & Dağdeviren, M. (2014). A HYBRID MCDM APPROACH TO ASSESS THE SUSTAINABILITY OF STUDENTS’ PREFERENCES FOR UNIVERSITY SELECTION. Technological and Economic Development of Economy, 20(3), 391-418. doi:10.3846/20294913.2014.883340 | es_ES |
dc.description.references | Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263. doi:10.2307/1914185 | es_ES |
dc.description.references | Kao, C., & Lin, P.-H. (2011). Qualitative factors in data envelopment analysis: A fuzzy number approach. European Journal of Operational Research, 211(3), 586-593. doi:10.1016/j.ejor.2010.12.004 | es_ES |
dc.description.references | Kobina, A., Liang, D., & He, X. (2017). Probabilistic Linguistic Power Aggregation Operators for Multi-Criteria Group Decision Making. Symmetry, 9(12), 320. doi:10.3390/sym9120320 | es_ES |
dc.description.references | Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260(1), 152-160. doi:10.1016/j.ejor.2016.11.052 | es_ES |
dc.description.references | Liao, H., Tang, M., Zhang, X., & Al-Barakati, A. (2019). Detecting and Visualizing in the Field of Hesitant Fuzzy Sets: A Bibliometric Analysis from 2009 to 2018. International Journal of Fuzzy Systems, 21(5), 1289-1305. doi:10.1007/s40815-019-00656-4 | es_ES |
dc.description.references | Liao, H., Xu, Z., Herrera-Viedma, E., & Herrera, F. (2017). Hesitant Fuzzy Linguistic Term Set and Its Application in Decision Making: A State-of-the-Art Survey. International Journal of Fuzzy Systems, 20(7), 2084-2110. doi:10.1007/s40815-017-0432-9 | es_ES |
dc.description.references | LIAO, H., XU, Z., & XIA, M. (2014). MULTIPLICATIVE CONSISTENCY OF HESITANT FUZZY PREFERENCE RELATION AND ITS APPLICATION IN GROUP DECISION MAKING. International Journal of Information Technology & Decision Making, 13(01), 47-76. doi:10.1142/s0219622014500035 | es_ES |
dc.description.references | Liao, H., Xu, Z., Zeng, X.-J., & Merigó, J. M. (2015). Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowledge-Based Systems, 76, 127-138. doi:10.1016/j.knosys.2014.12.009 | es_ES |
dc.description.references | Liao, H., Yu, J., Wu, X., Al-Barakati, A., Altalhi, A., & Herrera, F. (2019). Life satisfaction evaluation in earthquake-hit area by the probabilistic linguistic GLDS method integrated with the logarithm-multiplicative analytic hierarchy process. International Journal of Disaster Risk Reduction, 38, 101190. doi:10.1016/j.ijdrr.2019.101190 | es_ES |
dc.description.references | Liu, H., Song, Y., & Yang, G. (2019). Cross-efficiency evaluation in data envelopment analysis based on prospect theory. European Journal of Operational Research, 273(1), 364-375. doi:10.1016/j.ejor.2018.07.046 | es_ES |
dc.description.references | Pang, Q., Wang, H., & Xu, Z. (2016). Probabilistic linguistic term sets in multi-attribute group decision making. Information Sciences, 369, 128-143. doi:10.1016/j.ins.2016.06.021 | es_ES |
dc.description.references | Peng, D.-H., Gao, C.-Y., & Gao, Z.-F. (2013). Generalized hesitant fuzzy synergetic weighted distance measures and their application to multiple criteria decision-making. Applied Mathematical Modelling, 37(8), 5837-5850. doi:10.1016/j.apm.2012.11.016 | es_ES |
dc.description.references | Qin, J., Liu, X., & Pedrycz, W. (2017). An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. European Journal of Operational Research, 258(2), 626-638. doi:10.1016/j.ejor.2016.09.059 | es_ES |
dc.description.references | Rodríguez, R. M., Bedregal, B., Bustince, H., Dong, Y. C., Farhadinia, B., Kahraman, C., … Herrera, F. (2016). A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Information Fusion, 29, 89-97. doi:10.1016/j.inffus.2015.11.004 | es_ES |
dc.description.references | Rodriguez, R. M., Martinez, L., & Herrera, F. (2012). Hesitant Fuzzy Linguistic Term Sets for Decision Making. IEEE Transactions on Fuzzy Systems, 20(1), 109-119. doi:10.1109/tfuzz.2011.2170076 | es_ES |
dc.description.references | Rodríguez, R. M., Martínez, L., Torra, V., Xu, Z. S., & Herrera, F. (2014). Hesitant Fuzzy Sets: State of the Art and Future Directions. International Journal of Intelligent Systems, 29(6), 495-524. doi:10.1002/int.21654 | es_ES |
dc.description.references | Tang, X., Peng, Z., Ding, H., Cheng, M., & Yang, S. (2018). Novel distance and similarity measures for hesitant fuzzy sets and their applications to multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 34(6), 3903-3916. doi:10.3233/jifs-169561 | es_ES |
dc.description.references | Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323. doi:10.1007/bf00122574 | es_ES |
dc.description.references | Wang, W., Liu, X., Qin, Y., & Fu, Y. (2018). A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Safety Science, 110, 152-163. doi:10.1016/j.ssci.2018.08.009 | es_ES |
dc.description.references | Wang, H., & Xu, Z. (2016). Admissible orders of typical hesitant fuzzy elements and their application in ordered information fusion in multi-criteria decision making. Information Fusion, 29, 98-104. doi:10.1016/j.inffus.2015.08.009 | es_ES |
dc.description.references | Wei, G., Zhao, X., & Lin, R. (2013). Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowledge-Based Systems, 46, 43-53. doi:10.1016/j.knosys.2013.03.004 | es_ES |
dc.description.references | Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52(3), 395-407. doi:10.1016/j.ijar.2010.09.002 | es_ES |
dc.description.references | Xu, Z., & Xia, M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181(11), 2128-2138. doi:10.1016/j.ins.2011.01.028 | es_ES |
dc.description.references | Xu, Z., & Zhang, X. (2013). Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowledge-Based Systems, 52, 53-64. doi:10.1016/j.knosys.2013.05.011 | es_ES |
dc.description.references | Yager, R. R. (2018). Multi-Criteria Decision Making with Interval Criteria Satisfactions Using the Golden Rule Representative Value. IEEE Transactions on Fuzzy Systems, 26(2), 1023-1031. doi:10.1109/tfuzz.2017.2709275 | es_ES |
dc.description.references | Yu, P. L. (1973). A Class of Solutions for Group Decision Problems. Management Science, 19(8), 936-946. doi:10.1287/mnsc.19.8.936 | es_ES |