- -

Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.contributor.author Garcia-Dominguez, X es_ES
dc.contributor.author Domínguez-Martínez, Marta es_ES
dc.contributor.author Viudes-de-Castro, María Pilar es_ES
dc.contributor.author Diretto, Gianfranco es_ES
dc.contributor.author Peñaranda, D.S. es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.date.accessioned 2021-07-17T03:34:47Z
dc.date.available 2021-07-17T03:34:47Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169422
dc.description.abstract [EN] Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer. es_ES
dc.description.sponsorship This research was funded by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number AICO/2019/272. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Embryo es_ES
dc.subject Assisted reproductive technologies es_ES
dc.subject Cryopreservation es_ES
dc.subject Stress es_ES
dc.subject Metabolome es_ES
dc.subject Cholesterol es_ES
dc.subject IGF-I es_ES
dc.subject Steroid biosynthesis es_ES
dc.subject RT-qPCR es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.title Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms21228642 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F272/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Marco-Jiménez, F.; Garcia-Dominguez, X.; Domínguez-Martínez, M.; Viudes-De-Castro, MP.; Diretto, G.; Peñaranda, D.; Vicente Antón, JS. (2020). Effect of embryo vitrification on the steroid biosynthesis of liver tissue in rabbit offspring. International Journal of Molecular Sciences. 21(22):1-17. https://doi.org/10.3390/ijms21228642 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms21228642 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 33207830 es_ES
dc.identifier.pmcid PMC7696440 es_ES
dc.relation.pasarela S\424925 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9 es_ES
dc.description.references Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034 es_ES
dc.description.references Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-x es_ES
dc.description.references Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589 es_ES
dc.description.references Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010 es_ES
dc.description.references Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165 es_ES
dc.description.references Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019 es_ES
dc.description.references Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K., & Marco-Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLOS ONE, 10(4), e0125157. doi:10.1371/journal.pone.0125157 es_ES
dc.description.references Berntsen, S., & Pinborg, A. (2018). Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Research, 110(8), 630-643. doi:10.1002/bdr2.1219 es_ES
dc.description.references Maheshwari, A., Pandey, S., Amalraj Raja, E., Shetty, A., Hamilton, M., & Bhattacharya, S. (2017). Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Human Reproduction Update, 24(1), 35-58. doi:10.1093/humupd/dmx031 es_ES
dc.description.references Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804 es_ES
dc.description.references Kohda, T. (2013). Effects of embryonic manipulation and epigenetics. Journal of Human Genetics, 58(7), 416-420. doi:10.1038/jhg.2013.61 es_ES
dc.description.references Canovas, S., Ross, P. J., Kelsey, G., & Coy, P. (2017). DNA Methylation in Embryo Development: Epigenetic Impact of ART (Assisted Reproductive Technologies). BioEssays, 39(11), 1700106. doi:10.1002/bies.201700106 es_ES
dc.description.references Canovas, S., Ivanova, E., Romar, R., García-Martínez, S., Soriano-Úbeda, C., García-Vázquez, F. A., … Coy, P. (2017). DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife, 6. doi:10.7554/elife.23670 es_ES
dc.description.references Ivanova, E., Canovas, S., Garcia-Martínez, S., Romar, R., Lopes, J. S., Rizos, D., … Coy, P. (2020). DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clinical Epigenetics, 12(1). doi:10.1186/s13148-020-00857-x es_ES
dc.description.references García-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008 es_ES
dc.description.references Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028 es_ES
dc.description.references Marchesi, D., Qiao, J., & Feng, H. (2012). Embryo Manipulation and Imprinting. Seminars in Reproductive Medicine, 30(04), 323-334. doi:10.1055/s-0032-1320013 es_ES
dc.description.references Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119 es_ES
dc.description.references Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015 es_ES
dc.description.references Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228 es_ES
dc.description.references Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970 es_ES
dc.description.references Leibo, S. P., & Sztein, J. M. (2019). Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology, 86, 1-9. doi:10.1016/j.cryobiol.2019.01.007 es_ES
dc.description.references Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826 es_ES
dc.description.references De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038 es_ES
dc.description.references Saenz-de-Juano, M., Marco-Jimenez, F., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2014). Direct Comparison of the Effects of Slow Freezing and Vitrification on Late Blastocyst Gene Expression, Development, Implantation and Offspring of Rabbit Morulae. Reproduction in Domestic Animals, 49(3), 505-511. doi:10.1111/rda.12320 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., & Vicente, J. S. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals, 10(6), 1043. doi:10.3390/ani10061043 es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025 es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9 es_ES
dc.description.references Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051 es_ES
dc.description.references Zandstra, H., Brentjens, L. B. P. M., Spauwen, B., Touwslager, R. N. H., Bons, J. A. P., Mulder, A. L., … Van Montfoort, A. P. A. (2018). Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Human Reproduction, 33(9), 1645-1656. doi:10.1093/humrep/dey246 es_ES
dc.description.references Chen, L., Yang, T., Zheng, Z., Yu, H., Wang, H., & Qin, J. (2018). Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis. Archives of Gynecology and Obstetrics, 297(5), 1115-1130. doi:10.1007/s00404-018-4712-x es_ES
dc.description.references Zhang, W. Y., Selamet Tierney, E. S., Chen, A. C., Ling, A. Y., Fleischmann, R. R., & Baker, V. L. (2019). Vascular Health of Children Conceived via In Vitro Fertilization. The Journal of Pediatrics, 214, 47-53. doi:10.1016/j.jpeds.2019.07.033 es_ES
dc.description.references Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007 es_ES
dc.description.references Feuer, S. K., Liu, X., Donjacour, A., Simbulan, R., Maltepe, E., & Rinaudo, P. (2017). Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction, 153(1), 107-122. doi:10.1530/rep-16-0473 es_ES
dc.description.references Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023x es_ES
dc.description.references Ecker, D. J., Stein, P., Xu, Z., Williams, C. J., Kopf, G. S., Bilker, W. B., … Schultz, R. M. (2004). Long-term effects of culture of preimplantation mouse embryos on behavior. Proceedings of the National Academy of Sciences, 101(6), 1595-1600. doi:10.1073/pnas.0306846101 es_ES
dc.description.references Fauque, P., Mondon, F., Letourneur, F., Ripoche, M.-A., Journot, L., Barbaux, S., … Vaiman, D. (2010). In Vitro Fertilization and Embryo Culture Strongly Impact the Placental Transcriptome in the Mouse Model. PLoS ONE, 5(2), e9218. doi:10.1371/journal.pone.0009218 es_ES
dc.description.references Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., & Gutierrez-Adan, A. (2010). Histone Modifications at the Blastocyst Axin1Fu Locus Mark the Heritability of In Vitro Culture-Induced Epigenetic Alterations in Mice1. Biology of Reproduction, 83(5), 720-727. doi:10.1095/biolreprod.110.084715 es_ES
dc.description.references Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101 es_ES
dc.description.references Winick, M., & Noble, A. (1965). Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Developmental Biology, 12(3), 451-466. doi:10.1016/0012-1606(65)90009-6 es_ES
dc.description.references Saenz-de-Juano, M. D., Marco-Jiménez, F., & Vicente, J. S. (2016). Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 50-55. doi:10.1016/j.ejogrb.2016.10.049 es_ES
dc.description.references Delle Piane, L., Lin, W., Liu, X., Donjacour, A., Minasi, P., Revelli, A., … Rinaudo, P. F. (2010). Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Human Reproduction, 25(8), 2039-2046. doi:10.1093/humrep/deq165 es_ES
dc.description.references Wale, P. L., & Gardner, D. K. (2015). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 2-22. doi:10.1093/humupd/dmv034 es_ES
dc.description.references Charni-Natan, M., Aloni-Grinstein, R., Osher, E., & Rotter, V. (2019). Liver and Steroid Hormones—Can a Touch of p53 Make a Difference? Frontiers in Endocrinology, 10. doi:10.3389/fendo.2019.00374 es_ES
dc.description.references Yakar, S., Liu, J.-L., Stannard, B., Butler, A., Accili, D., Sauer, B., & LeRoith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences, 96(13), 7324-7329. doi:10.1073/pnas.96.13.7324 es_ES
dc.description.references Juul, A. (2003). Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Hormone & IGF Research, 13(4), 113-170. doi:10.1016/s1096-6374(03)00038-8 es_ES
dc.description.references Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-2465 es_ES
dc.description.references Belva, F., Bonduelle, M., Provyn, S., Painter, R. C., Tournaye, H., Roelants, M., & De Schepper, J. (2018). Metabolic Syndrome and Its Components in Young Adults Conceived by ICSI. International Journal of Endocrinology, 2018, 1-8. doi:10.1155/2018/8170518 es_ES
dc.description.references Fournier, N., Atger, V., Paul, J.-L., Sturm, M., Duverger, N., Rothblat, G. H., & Moatti, N. (2000). Human ApoA-IV Overexpression in Transgenic Mice Induces cAMP-Stimulated Cholesterol Efflux From J774 Macrophages to Whole Serum. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1283-1292. doi:10.1161/01.atv.20.5.1283 es_ES
dc.description.references Liang, Y., Jiang, X.-C., Liu, R., Liang, G., Beyer, T. P., Gao, H., … Cao, G. (2004). Liver X Receptors (LXRs) Regulate Apolipoprotein AIV-Implications of the Antiatherosclerotic Effect of LXR Agonists. Molecular Endocrinology, 18(8), 2000-2010. doi:10.1210/me.2003-0477 es_ES
dc.description.references Lin, Q., Cao, Y., & Gao, J. (2015). Decreased expression of the APOA1–APOC3–APOA4 gene cluster is associated with risk of Alzheimer’s disease. Drug Design, Development and Therapy, 5421. doi:10.2147/dddt.s89279 es_ES
dc.description.references Qin, W., Li, X., Xie, L., Li, S., Liu, J., Jia, L., … Chen, Z. (2016). A long non-coding RNA,APOA4-AS, regulatesAPOA4expression depending on HuR in mice. Nucleic Acids Research, 44(13), 6423-6433. doi:10.1093/nar/gkw341 es_ES
dc.description.references Leese, H. J., Guerif, F., Allgar, V., Brison, D. R., Lundin, K., & Sturmey, R. G. (2016). Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Molecular Reproduction and Development, 83(9), 748-754. doi:10.1002/mrd.22684 es_ES
dc.description.references Kohda, T., & Ishino, F. (2013). Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1609), 20120353. doi:10.1098/rstb.2012.0353 es_ES
dc.description.references Garcia-Dominguez, X., Juarez, J. D., Vicente, J. S., & Marco-Jiménez, F. (2020). Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology, 97, 60-65. doi:10.1016/j.cryobiol.2020.10.008 es_ES
dc.description.references Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., & Vicente, J. S. (2017). Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology, 98, 68-74. doi:10.1016/j.theriogenology.2017.05.005 es_ES
dc.description.references Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008 es_ES
dc.description.references Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055 es_ES
dc.description.references Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem