- -

Cesaro bounded operators in Banach spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Cesaro bounded operators in Banach spaces

Show simple item record

Files in this item

dc.contributor.author Bermúdez, Teresa es_ES
dc.contributor.author Bonilla, Antonio es_ES
dc.contributor.author Muller, Vladimir es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2021-07-20T03:30:46Z
dc.date.available 2021-07-20T03:30:46Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0021-7670 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169537
dc.description.abstract [EN] We study several notions of boundedness for operators. It is known that any power bounded operator is absolutely Cesaro bounded and strongly Kreiss bounded (in particular, uniformly Kreiss bounded). The converses do not hold in general. In this note, we give examples of topologically mixing (hence, not power bounded) absolutely Cesaro bounded operators on l(p)(N), 1 <= p < infinity, and provide examples of uniformly Kreiss bounded operators which are not absolutely Cesaro bounded. These results complement a few known examples (see [27] and [2]). We also obtain a characterization of power bounded operators which generalizes a result of Van Casteren [32]. In [2] Aleman and Suciu asked if every uniformly Kreiss bounded operator T on a Banach space satisfies that. We solve this question for Hilbert space operators and, moreover, we prove that, if T is absolutely Cesaro bounded on a Banach (Hilbert) space, then parallel to T-n parallel to = o(n) ((parallel to Tn parallel to=o(n12), respectively). As a consequence, every absolutely Cesaro bounded operator on a reflexive Banach space is mean ergodic. es_ES
dc.description.sponsorship The first, second and fourth authors were supported by MINECO and FEDER, Project MTM201675963-P. The third author was supported by grant No. 17-27844S of GA CR and RVO: 67985840. The fourth author was also supported by Generalitat Valenciana, Project PROMETEO/2017/102. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal d Analyse Mathématique es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cesàro bounded operators es_ES
dc.subject Kreiss bounded operators es_ES
dc.subject Mean ergodic operators es_ES
dc.subject Mixing es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Cesaro bounded operators in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11854-020-0085-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//17-27844S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//67985840/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bermúdez, T.; Bonilla, A.; Muller, V.; Peris Manguillot, A. (2020). Cesaro bounded operators in Banach spaces. Journal d Analyse Mathématique. 140(1):187-206. https://doi.org/10.1007/s11854-020-0085-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11854-020-0085-8 es_ES
dc.description.upvformatpinicio 187 es_ES
dc.description.upvformatpfin 206 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 140 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\435013 es_ES
dc.contributor.funder Czech Grant Agency es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), 401–436. es_ES
dc.description.references A. Aleman and L. Suciu, On ergodic operator means in Banach spaces, Integral Equations Operator Theory 85 (2016), 259–287. es_ES
dc.description.references I. Assani, Sur les opérateurs à puissances bornées et le théorème ergodique ponctuel dans Lp[0, 1], 1 < p < ∞, Canad. J. Math. 38 (1986), 937–946. es_ES
dc.description.references M. J. Beltrán-Meneu, Operators on Weighted Spaces of Holomorphic Functions, PhD Thesis, Universitat Politècnica de Valencia, Valencia, Spain, 2014. es_ES
dc.description.references M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions, Proc. Amer. Math. Soc. 141 (2013), 4293–4303. es_ES
dc.description.references M. J. Beltrán, M.C. Gómez-Collado, E. Jordá and D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270 (2016), 4369–4385. es_ES
dc.description.references N. C. Bernardes, Jr., A. Bonilla, V. Müller and A. Peris, Distributional chaos for linear operators, J. Funct. Anal. 265 (2013), 2143–2163. es_ES
dc.description.references N. C. Bernardes, Jr., A. Bonilla, A. Peris and X. Wu, Distributional chaos for operators in Banach spaces, J. Math. Anal. Appl. 459 (2018), 797–821. es_ES
dc.description.references J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions, Math. Z. 261 (2009), 649–657. es_ES
dc.description.references Y. Derriennic, On the mean ergodic theorem for Cesaro bounded operators, Colloq. Math. 84/85 (2000), 443–455. es_ES
dc.description.references Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13 (1973), 252–267. es_ES
dc.description.references R. Émilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1–14. es_ES
dc.description.references A. Gomilko and J. Zemánek, On the uniform Kreiss resolvent condition, (Russian) Funktsional. Anal. i Prilozhen. 42 (2008), 81–84 es_ES
dc.description.references A. Gomilko and J. Zemánek, English translation in Funct. Anal. Appl. 42 (2008), 230–233. es_ES
dc.description.references K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, London, 2011. es_ES
dc.description.references B. Z. Guo and H. Zwart, On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform, Integral Equations Operator Theory 54 (2006), 349–383. es_ES
dc.description.references B. Hou and L. Luo, Some remarks on distributional chaos for bounded linear operators, Turk. J. Math. 39 (2015), 251–258. es_ES
dc.description.references E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246–269. es_ES
dc.description.references I. Kornfeld and W. Kosek, Positive L1operators associated with nonsingular mappings and an example of E. Hille, Colloq. Math. 98 (2003), 63–77. es_ES
dc.description.references W. Kosek, Example of a mean ergodic L1operator with the linear rate of growth, Colloq. Math. 124 (2011), 15–22. es_ES
dc.description.references U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985. es_ES
dc.description.references C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT, 31 (1991), 293–313. es_ES
dc.description.references C. A. McCarthy, A Strong Resolvent Condition does not Imply Power-Boundedness, Chalmers Institute of Technology and the University of Göteborg, Preprint No. 15 (1971). es_ES
dc.description.references A. Montes-Rodríguez, J. Sánchez-Álvarez and J. Zemánek, Uniform Abel—Kreiss boundedness and the extremal behavior of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761–788. es_ES
dc.description.references V. Müller and J. Vrsovsky, Orbits of linear operators tending to infinity, Rocky Mountain J. Math. 39 (2009), 219–230. es_ES
dc.description.references O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134. es_ES
dc.description.references J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, Calif.-London-Amsterdam, 1965. es_ES
dc.description.references A. L. Shields, On Möbius Bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371–374. es_ES
dc.description.references J. C. Strikwerda and B. A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, in Linear Operators, Polish Acad. Sci., Warsaw, 1997, pp. 339–360. es_ES
dc.description.references L. Suciu, Ergodic behaviors of the regular operator means, Banach J. Math. Anal. 11 (2017), 239–265. es_ES
dc.description.references L. Suciu and J. Zemánek, Growth conditions on Cesàro means of higher order, Acta Sci. Math (Szeged) 79 (2013), 545–581. es_ES
dc.description.references Y. Tomilov and J. Zemánek, A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225. es_ES
dc.description.references J. A. Van Casteren, Boundedness properties of resolvents and semigroups of operators, in Linear Operators, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 59–74. es_ES


This item appears in the following Collection(s)

Show simple item record