Mostrar el registro sencillo del ítem
dc.contributor.author | Bermúdez, Teresa | es_ES |
dc.contributor.author | Bonilla, Antonio | es_ES |
dc.contributor.author | Muller, Vladimir | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.date.accessioned | 2021-07-20T03:30:46Z | |
dc.date.available | 2021-07-20T03:30:46Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 0021-7670 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169537 | |
dc.description.abstract | [EN] We study several notions of boundedness for operators. It is known that any power bounded operator is absolutely Cesaro bounded and strongly Kreiss bounded (in particular, uniformly Kreiss bounded). The converses do not hold in general. In this note, we give examples of topologically mixing (hence, not power bounded) absolutely Cesaro bounded operators on l(p)(N), 1 <= p < infinity, and provide examples of uniformly Kreiss bounded operators which are not absolutely Cesaro bounded. These results complement a few known examples (see [27] and [2]). We also obtain a characterization of power bounded operators which generalizes a result of Van Casteren [32]. In [2] Aleman and Suciu asked if every uniformly Kreiss bounded operator T on a Banach space satisfies that. We solve this question for Hilbert space operators and, moreover, we prove that, if T is absolutely Cesaro bounded on a Banach (Hilbert) space, then parallel to T-n parallel to = o(n) ((parallel to Tn parallel to=o(n12), respectively). As a consequence, every absolutely Cesaro bounded operator on a reflexive Banach space is mean ergodic. | es_ES |
dc.description.sponsorship | The first, second and fourth authors were supported by MINECO and FEDER, Project MTM201675963-P. The third author was supported by grant No. 17-27844S of GA CR and RVO: 67985840. The fourth author was also supported by Generalitat Valenciana, Project PROMETEO/2017/102. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal d Analyse Mathématique | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cesàro bounded operators | es_ES |
dc.subject | Kreiss bounded operators | es_ES |
dc.subject | Mean ergodic operators | es_ES |
dc.subject | Mixing | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Cesaro bounded operators in Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11854-020-0085-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//17-27844S/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//67985840/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bermúdez, T.; Bonilla, A.; Muller, V.; Peris Manguillot, A. (2020). Cesaro bounded operators in Banach spaces. Journal d Analyse Mathématique. 140(1):187-206. https://doi.org/10.1007/s11854-020-0085-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11854-020-0085-8 | es_ES |
dc.description.upvformatpinicio | 187 | es_ES |
dc.description.upvformatpfin | 206 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 140 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\435013 | es_ES |
dc.contributor.funder | Czech Grant Agency | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), 401–436. | es_ES |
dc.description.references | A. Aleman and L. Suciu, On ergodic operator means in Banach spaces, Integral Equations Operator Theory 85 (2016), 259–287. | es_ES |
dc.description.references | I. Assani, Sur les opérateurs à puissances bornées et le théorème ergodique ponctuel dans Lp[0, 1], 1 < p < ∞, Canad. J. Math. 38 (1986), 937–946. | es_ES |
dc.description.references | M. J. Beltrán-Meneu, Operators on Weighted Spaces of Holomorphic Functions, PhD Thesis, Universitat Politècnica de Valencia, Valencia, Spain, 2014. | es_ES |
dc.description.references | M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions, Proc. Amer. Math. Soc. 141 (2013), 4293–4303. | es_ES |
dc.description.references | M. J. Beltrán, M.C. Gómez-Collado, E. Jordá and D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270 (2016), 4369–4385. | es_ES |
dc.description.references | N. C. Bernardes, Jr., A. Bonilla, V. Müller and A. Peris, Distributional chaos for linear operators, J. Funct. Anal. 265 (2013), 2143–2163. | es_ES |
dc.description.references | N. C. Bernardes, Jr., A. Bonilla, A. Peris and X. Wu, Distributional chaos for operators in Banach spaces, J. Math. Anal. Appl. 459 (2018), 797–821. | es_ES |
dc.description.references | J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions, Math. Z. 261 (2009), 649–657. | es_ES |
dc.description.references | Y. Derriennic, On the mean ergodic theorem for Cesaro bounded operators, Colloq. Math. 84/85 (2000), 443–455. | es_ES |
dc.description.references | Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13 (1973), 252–267. | es_ES |
dc.description.references | R. Émilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1–14. | es_ES |
dc.description.references | A. Gomilko and J. Zemánek, On the uniform Kreiss resolvent condition, (Russian) Funktsional. Anal. i Prilozhen. 42 (2008), 81–84 | es_ES |
dc.description.references | A. Gomilko and J. Zemánek, English translation in Funct. Anal. Appl. 42 (2008), 230–233. | es_ES |
dc.description.references | K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, London, 2011. | es_ES |
dc.description.references | B. Z. Guo and H. Zwart, On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform, Integral Equations Operator Theory 54 (2006), 349–383. | es_ES |
dc.description.references | B. Hou and L. Luo, Some remarks on distributional chaos for bounded linear operators, Turk. J. Math. 39 (2015), 251–258. | es_ES |
dc.description.references | E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246–269. | es_ES |
dc.description.references | I. Kornfeld and W. Kosek, Positive L1operators associated with nonsingular mappings and an example of E. Hille, Colloq. Math. 98 (2003), 63–77. | es_ES |
dc.description.references | W. Kosek, Example of a mean ergodic L1operator with the linear rate of growth, Colloq. Math. 124 (2011), 15–22. | es_ES |
dc.description.references | U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985. | es_ES |
dc.description.references | C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT, 31 (1991), 293–313. | es_ES |
dc.description.references | C. A. McCarthy, A Strong Resolvent Condition does not Imply Power-Boundedness, Chalmers Institute of Technology and the University of Göteborg, Preprint No. 15 (1971). | es_ES |
dc.description.references | A. Montes-Rodríguez, J. Sánchez-Álvarez and J. Zemánek, Uniform Abel—Kreiss boundedness and the extremal behavior of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761–788. | es_ES |
dc.description.references | V. Müller and J. Vrsovsky, Orbits of linear operators tending to infinity, Rocky Mountain J. Math. 39 (2009), 219–230. | es_ES |
dc.description.references | O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134. | es_ES |
dc.description.references | J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, Calif.-London-Amsterdam, 1965. | es_ES |
dc.description.references | A. L. Shields, On Möbius Bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371–374. | es_ES |
dc.description.references | J. C. Strikwerda and B. A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, in Linear Operators, Polish Acad. Sci., Warsaw, 1997, pp. 339–360. | es_ES |
dc.description.references | L. Suciu, Ergodic behaviors of the regular operator means, Banach J. Math. Anal. 11 (2017), 239–265. | es_ES |
dc.description.references | L. Suciu and J. Zemánek, Growth conditions on Cesàro means of higher order, Acta Sci. Math (Szeged) 79 (2013), 545–581. | es_ES |
dc.description.references | Y. Tomilov and J. Zemánek, A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225. | es_ES |
dc.description.references | J. A. Van Casteren, Boundedness properties of resolvents and semigroups of operators, in Linear Operators, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 59–74. | es_ES |