- -

Degradation of a mechanically recycled polylactide/halloysite nanocomposite in an ethanolic food simulant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Degradation of a mechanically recycled polylactide/halloysite nanocomposite in an ethanolic food simulant

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beltrán, Freddys R. es_ES
dc.contributor.author Arrieta, Marina P. es_ES
dc.contributor.author Hortal, Yaiza es_ES
dc.contributor.author Gaspar, Gerald es_ES
dc.contributor.author de la Orden, Mª Ulagares es_ES
dc.contributor.author Martínez Urreaga, Joaquín es_ES
dc.date.accessioned 2021-07-20T10:19:05Z
dc.date.available 2021-07-20T10:19:05Z
dc.date.issued 2021-07-16
dc.identifier.uri http://hdl.handle.net/10251/169560
dc.description.abstract [EN] This work aims to study the effect of immersion in a ethanolic food simulant in mechanically recycled poly(lactic acid) (PLAR) and its nanocomposites reinforced with halloysite nanotubes (HNT). PLAR was obtained by subjecting PLA to an accelerated ageing process, which includes photochemical, thermal and hydrothermal ageing steps, followed by a final demanding washing step. PLAR was further reinforced with 4 %wt. HNT to improve the properties of the PLAR films. The materials were melt compounded by melt extrusion and processed into films by compression molding. The resulting films were exposed to food simulant D1 (50 %vol. ethanol solution) for 10 days at 40 °C. The intrinsic viscosity, crystallization behavior, thermal stability as well as the mechanical performance were analyzed before and after the contact with the food simulant. The swelling, plasticizing and hydrolyzing effect of the food simulant led to an important decrease of the intrinsic viscosity of all the samples, along with a significant increase of the crystallinity. Thermal stability was negatively affected by the decrease of the molecular weight, while the high crystallinity values resulted in materials with higher Vickers hardness values after the immersion in the food simulant. es_ES
dc.description.sponsorship This work was supported by European Union’s Horizon 2020 research and innovation program [grant agreement No. 860407 BIO-PLASTICS EUROPE], by MINECO-Spain [project CTM2017-88989-P] as well as Universidad Politécnica de Madrid [project UPM RP 160543006]. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Applied Research in Technology & Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Halloysite es_ES
dc.subject Nanocomposites es_ES
dc.subject Mechanical recycling es_ES
dc.subject Food simulant es_ES
dc.title Degradation of a mechanically recycled polylactide/halloysite nanocomposite in an ethanolic food simulant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jarte.2021.15297
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-88989-P/ES/RECICLADO MECANICO DE POLI(ACIDO LACTICO): REGRADACION DEL PLASTICO RECICLADO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860407/EU/Developing and Implementing Sustainability-Based Solutions for Bio-Based Plastic Production and Use to Preserve Land and Sea Environmental Quality in Europe/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Beltrán, FR.; Arrieta, MP.; Hortal, Y.; Gaspar, G.; De La Orden, MU.; Martínez Urreaga, J. (2021). Degradation of a mechanically recycled polylactide/halloysite nanocomposite in an ethanolic food simulant. Journal of Applied Research in Technology & Engineering. 2(2):63-70. https://doi.org/10.4995/jarte.2021.15297 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jarte.2021.15297 es_ES
dc.description.upvformatpinicio 63 es_ES
dc.description.upvformatpfin 70 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2695-8821
dc.relation.pasarela OJS\15297 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agüero, A., Morcillo, D.M., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., & Fenollar, O. (2019). Study of the influence of the reprocessing cycles on the final properties of polylactide pieces obtained by injection molding. Polymers, 11(12), 1908. https://doi.org/10.3390/polym11121908 es_ES
dc.description.references Arrieta, M.P., Castro-López, M., Rayón, E., Barral-Losada, L., López-Vilariño, J.M., López, J., & González-Rodríguez, M.V. (2014). Plasticized poly(lactic acid)-Poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. https://doi.org/10.1021/jf5029812 es_ES
dc.description.references Arrieta, P.M., Samper, D.M., Aldas, M., & López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008 es_ES
dc.description.references Badia, J.D., Santonja-Blasco, L., Martínez-Felipe, A., & Ribes-Greus, A. (2012). Hygrothermal ageing of reprocessed polylactide. Polymer Degradation and Stability, 97(10), 1881-1890. https://doi.org/10.1016/j.polymdegradstab.2012.06.001 es_ES
dc.description.references Beltrán, F.R., de la Orden, M.U., Lorenzo, V., Pérez, E., Cerrada, M.L., & Martínez Urreaga, J. (2016). Water-induced structural changes in poly(lactic acid) and PLLA-clay nanocomposites. Polymer, 107, 211-222. https://doi.org/10.1016/j.polymer.2016.11.031 es_ES
dc.description.references Beltrán, F.R., Lorenzo, V., Acosta, J., de la Orden, M.U., & Martínez Urreaga, J. (2018a). Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). Journal of Environmental Management, 216, 25-31. https://doi.org/10.1016/j.jenvman.2017.05.020 es_ES
dc.description.references Beltrán, F.R., de la Orden, M.U., & Martínez Urreaga, J. (2018b). Amino-modified halloysite nanotubes to reduce polymer degradation and improve the performance of mechanically recycled poly(lactic acid). Journal of Polymers and the Environment, 26, 4046-4055. https://doi.org/10.1007/s10924-018-1276-6 es_ES
dc.description.references Beltrán, F.R., Climent-Pascual, E., de la Orden, M.U., & Martínez Urreaga, J. (2020). Effect of solid-state polymerization on the structure and properties of mechanically recycled poly(lactic acid). Polymer Degradation and Stability, 171, 109045. https://doi.org/10.1016/j.polymdegradstab.2019.109045 es_ES
dc.description.references Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)-Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333-366. https://doi.org/10.1016/j.addr.2016.03.010 es_ES
dc.description.references Cosate de Andrade, M.F., Souza, P.M.S., Cavalett, O., & Morales, A.R. (2016). Life cycle assessment of poly(lactic acid) (PLA): Comparison between chemical recycling, mechanical recycling and composting. Journal of Polymers and the Environment, 24(4), 372-384. https://doi.org/10.1007/s10924-016-0787-2 es_ES
dc.description.references European Bioplastics. (2020). Bioplastics market data 2019. https://www.european-bioplastics.org/market/. es_ES
dc.description.references European Comission. (2018). A european strategy for plastics in a circular economy. Available at https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-brochure.pdf es_ES
dc.description.references European Comission. (2019). Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. es_ES
dc.description.references Farah, S., Anderson, D.G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012 es_ES
dc.description.references Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J.M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. https://doi.org/10.1016/j.carbpol.2012.06.025 es_ES
dc.description.references Haider, T., Völker, C., Kramm, J., Landfester, K., & Wurm, F.R. (2018). Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 58(1), 50-62. https://doi.org/10.1002/anie.201805766 es_ES
dc.description.references Iñiguez-Franco, F., Auras, R., Burgess, G., Holmes, D., Fang, X., Rubino, M., & Soto-Valdez, H. (2016). Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer, 99, 315-323. https://doi.org/10.1016/j.polymer.2016.07.018 es_ES
dc.description.references Iñiguez-Franco, F., Auras, R., Rubino, M., Dolan, K., Soto-Valdez, H., & Selke, S. (2017). Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions. Polymer Degradation and Stability, 146, 287-297. https://doi.org/10.1016/j.polymdegradstab.2017.11.004 es_ES
dc.description.references Kale, G., Auras, R., & Singh, S.P. (2007). Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 20(1), 49-70. https://doi.org/10.1002/pts.742 es_ES
dc.description.references Liu, M., Guo, B., Zou, Q., Du, M., & Jia, D. (2008). Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology, 19(20), 205709. https://doi.org/10.1088/0957-4484/19/20/205709 es_ES
dc.description.references Maga, D., Hiebel, M., & Thonemann, N. (2019). Life cycle assessment of recycling options for polylactic acid. Resources, Conservation and Recycling, 149, 86-96 https://doi.org/10.1016/j.resconrec.2019.05.018 es_ES
dc.description.references Meaurio, E., López-Rodríguez, N., & Sarasua, J.R. (2006). Infrared spectrum of poly(l-lactide): Application to crystallinity studies. Macromolecules, 39(26), 9291-9301. https://doi.org/10.1021/ma061890r es_ES
dc.description.references Niaounakis, M. (2019). Recycling of biopolymers - the patent perspective. European Polymer Journal, 114, 464-475 https://doi.org/10.1016/j.eurpolymj.2019.02.027 es_ES
dc.description.references Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. Journal of Applied Polymer Science, 59(1), 37-43. https://doi.org/10.1002/(SICI)1097-4628(19960103)59:13.0.CO;2-N es_ES
dc.description.references Raquez, J., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014 es_ES
dc.description.references Risyon, N.P., Othman, S.H., Basha, R.K., & Talib, R.A. (2020). Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packaging and Shelf Life, 23, 100450 https://doi.org/10.1016/j. fpsl.2019.100450 es_ES
dc.description.references Rojas-Lema, S., Quiles-Carrillo, L., Garcia-Garcia, D., Melendez-Rodriguez, B., Balart, R., & Torres-Giner, S. (2020). Tailoring the properties of thermo-compressed polylactide films for food packaging applications by individual and combined additions of lactic acid oligomer and halloysite nanotubes. Molecules, 25(8), 1976. https://doi.org/10.3390/ molecules25081976 es_ES
dc.description.references Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., & Jolliet, O. (2015). Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. Journal of Cleaner Production, 86, 132-145. https://doi.org/10.1016/j.jclepro.2014.08.049 es_ES
dc.description.references Samper, M.D., Arrieta, M.P., Ferrándiz, S., & López, J. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), 41161. https://doi.org/10.1002/app.41161 es_ES
dc.description.references Samper, M.D., Bertomeu, D., Arrieta, M.P., Ferri, J.M., & López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials, 11(10), 1886. https://doi.org/10.3390/ma11101886 es_ES
dc.description.references Tuna, B., & Ozkoc, G. (2017). Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly(lactic acid). Journal of Polymers and the Environment, 25, 983-993. https://doi.org/10.1007/s10924-016-0856-6 es_ES
dc.description.references Villegas, C., Arrieta, M.P., Rojas, A., Torres, A., Faba, S., Toledo, M.J., ..., & Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176, 107336. https://doi.org/10.1016/j.compositesb.2019.107336 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem