- -

A generalization to Sylow permutability of pronormal subgroups of finite groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A generalization to Sylow permutability of pronormal subgroups of finite groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Esteban Romero, Ramón es_ES
dc.contributor.author Longobardi, P. es_ES
dc.contributor.author Maj, M. es_ES
dc.date.accessioned 2021-07-21T03:31:16Z
dc.date.available 2021-07-21T03:31:16Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0219-4988 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169641
dc.description Electronic version of an article published as Journal of Algebra and Its Applications, 2020, 19:03 https://doi.org/10.1142/S0219498820500528 © World Scientific Publishing Company. es_ES
dc.description.abstract [EN] In this note, we present a new subgroup embedding property that can be considered as an analogue of pronormality in the scope of permutability and Sylow permutability in finite groups. We prove that finite PST-groups, or groups in which Sylow permutability is a transitive relation, can be characterized in terms of this property, in a similar way as T-groups, or groups in which normality is transitive, can be characterized in terms of pronormality. es_ES
dc.description.sponsorship The research of the first author has been supported by the research grants MTM2014-54707-C3-1-P by the "Ministerio de Economia y Competitividad" (Spain) and FEDER (European Union) and PROMETEO/2017/057 from "Generalitat" (Valencian Community, Spain). Part of the work of this paper has been done during some visits of the first author to the Dipartimento di Matematica of the Universita degli Studi di Salerno supported by the "National Group for Algebraic and Geometric Structures, and their Applications" (GNSAGA - INdAM), Italy. es_ES
dc.language Inglés es_ES
dc.publisher World Scientific es_ES
dc.relation.ispartof Journal of Algebra and Its Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite group es_ES
dc.subject Subgroup embedding property es_ES
dc.subject Permutability es_ES
dc.subject Pro-S-permutability es_ES
dc.subject Propermutability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A generalization to Sylow permutability of pronormal subgroups of finite groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0219498820500528 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Esteban Romero, R.; Longobardi, P.; Maj, M. (2020). A generalization to Sylow permutability of pronormal subgroups of finite groups. Journal of Algebra and Its Applications. 19(3):1-13. https://doi.org/10.1142/S0219498820500528 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1142/S0219498820500528 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\414927 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ballester-Bolinches, A., & Esteban-Romero, R. (2002). Sylow Permutable Subnormal Subgroups of Finite Groups. Journal of Algebra, 251(2), 727-738. doi:10.1006/jabr.2001.9138 es_ES
dc.description.references Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite J-groups. Journal of the Australian Mathematical Society, 75(2), 181-192. doi:10.1017/s1446788700003712 es_ES
dc.description.references Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite soluble groups in which Sylow permutability is a transitive relation. Acta Mathematica Hungarica, 101(3), 193-202. doi:10.1023/b:amhu.0000003903.71033.fc es_ES
dc.description.references Ballester-Bolinches, A., Esteban-Romero, R., & Asaad, M. (2010). Products of Finite Groups. de Gruyter Expositions in Mathematics. doi:10.1515/9783110220612 es_ES
dc.description.references Ballester-Bolinches, A., Feldman, A. D., Pedraza-Aguilera, M. C., & Ragland, M. F. (2011). A class of generalised finite T-groups. Journal of Algebra, 333(1), 128-138. doi:10.1016/j.jalgebra.2011.02.018 es_ES
dc.description.references Deskins, W. E. (1963). On quasinormal subgroups of finite groups. Mathematische Zeitschrift, 82(2), 125-132. doi:10.1007/bf01111801 es_ES
dc.description.references Doerk, K., & Hawkes, T. O. (1992). Finite Soluble Groups. doi:10.1515/9783110870138 es_ES
dc.description.references Huppert, B. (1967). Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64981-3 es_ES
dc.description.references Kaplan, G. (2010). On T-groups, supersolvable groups, and maximal subgroups. Archiv der Mathematik, 96(1), 19-25. doi:10.1007/s00013-010-0207-0 es_ES
dc.description.references Kegel, O. H. (1962). Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78(1), 205-221. doi:10.1007/bf01195169 es_ES
dc.description.references Mysovskikh, V. I. (1999). Investigation of Subgroup Embeddings by the Computer Algebra Package GAP. Computer Algebra in Scientific Computing CASC’99, 309-315. doi:10.1007/978-3-642-60218-4_24 es_ES
dc.description.references Peng, T. A. (1969). Finite groups with pro-normal subgroups. Proceedings of the American Mathematical Society, 20(1), 232-232. doi:10.1090/s0002-9939-1969-0232850-1 es_ES
dc.description.references Peng, T. A. (1971). Pronormality in Finite Groups. Journal of the London Mathematical Society, s2-3(2), 301-306. doi:10.1112/jlms/s2-3.2.301 es_ES
dc.description.references Schmid, P. (1998). Subgroups Permutable with All Sylow Subgroups. Journal of Algebra, 207(1), 285-293. doi:10.1006/jabr.1998.7429 es_ES
dc.description.references Wielandt, H. (1939). Eine Verallgemeinerung der invarianten Untergruppen. Mathematische Zeitschrift, 45(1), 209-244. doi:10.1007/bf01580283 es_ES
dc.description.references Yi, X., & Skiba, A. N. (2014). On $$S$$ S -propermutable Subgroups of Finite Groups. Bulletin of the Malaysian Mathematical Sciences Society, 38(2), 605-616. doi:10.1007/s40840-014-0038-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem