Mostrar el registro sencillo del ítem
dc.contributor.author | Esteban Romero, Ramón | es_ES |
dc.contributor.author | Longobardi, P. | es_ES |
dc.contributor.author | Maj, M. | es_ES |
dc.date.accessioned | 2021-07-21T03:31:16Z | |
dc.date.available | 2021-07-21T03:31:16Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 0219-4988 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169641 | |
dc.description | Electronic version of an article published as Journal of Algebra and Its Applications, 2020, 19:03 https://doi.org/10.1142/S0219498820500528 © World Scientific Publishing Company. | es_ES |
dc.description.abstract | [EN] In this note, we present a new subgroup embedding property that can be considered as an analogue of pronormality in the scope of permutability and Sylow permutability in finite groups. We prove that finite PST-groups, or groups in which Sylow permutability is a transitive relation, can be characterized in terms of this property, in a similar way as T-groups, or groups in which normality is transitive, can be characterized in terms of pronormality. | es_ES |
dc.description.sponsorship | The research of the first author has been supported by the research grants MTM2014-54707-C3-1-P by the "Ministerio de Economia y Competitividad" (Spain) and FEDER (European Union) and PROMETEO/2017/057 from "Generalitat" (Valencian Community, Spain). Part of the work of this paper has been done during some visits of the first author to the Dipartimento di Matematica of the Universita degli Studi di Salerno supported by the "National Group for Algebraic and Geometric Structures, and their Applications" (GNSAGA - INdAM), Italy. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific | es_ES |
dc.relation.ispartof | Journal of Algebra and Its Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite group | es_ES |
dc.subject | Subgroup embedding property | es_ES |
dc.subject | Permutability | es_ES |
dc.subject | Pro-S-permutability | es_ES |
dc.subject | Propermutability | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A generalization to Sylow permutability of pronormal subgroups of finite groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1142/S0219498820500528 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F057/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Esteban Romero, R.; Longobardi, P.; Maj, M. (2020). A generalization to Sylow permutability of pronormal subgroups of finite groups. Journal of Algebra and Its Applications. 19(3):1-13. https://doi.org/10.1142/S0219498820500528 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1142/S0219498820500528 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\414927 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ballester-Bolinches, A., & Esteban-Romero, R. (2002). Sylow Permutable Subnormal Subgroups of Finite Groups. Journal of Algebra, 251(2), 727-738. doi:10.1006/jabr.2001.9138 | es_ES |
dc.description.references | Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite J-groups. Journal of the Australian Mathematical Society, 75(2), 181-192. doi:10.1017/s1446788700003712 | es_ES |
dc.description.references | Ballester-Bolinches, A., & Esteban-Romero, R. (2003). On finite soluble groups in which Sylow permutability is a transitive relation. Acta Mathematica Hungarica, 101(3), 193-202. doi:10.1023/b:amhu.0000003903.71033.fc | es_ES |
dc.description.references | Ballester-Bolinches, A., Esteban-Romero, R., & Asaad, M. (2010). Products of Finite Groups. de Gruyter Expositions in Mathematics. doi:10.1515/9783110220612 | es_ES |
dc.description.references | Ballester-Bolinches, A., Feldman, A. D., Pedraza-Aguilera, M. C., & Ragland, M. F. (2011). A class of generalised finite T-groups. Journal of Algebra, 333(1), 128-138. doi:10.1016/j.jalgebra.2011.02.018 | es_ES |
dc.description.references | Deskins, W. E. (1963). On quasinormal subgroups of finite groups. Mathematische Zeitschrift, 82(2), 125-132. doi:10.1007/bf01111801 | es_ES |
dc.description.references | Doerk, K., & Hawkes, T. O. (1992). Finite Soluble Groups. doi:10.1515/9783110870138 | es_ES |
dc.description.references | Huppert, B. (1967). Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64981-3 | es_ES |
dc.description.references | Kaplan, G. (2010). On T-groups, supersolvable groups, and maximal subgroups. Archiv der Mathematik, 96(1), 19-25. doi:10.1007/s00013-010-0207-0 | es_ES |
dc.description.references | Kegel, O. H. (1962). Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78(1), 205-221. doi:10.1007/bf01195169 | es_ES |
dc.description.references | Mysovskikh, V. I. (1999). Investigation of Subgroup Embeddings by the Computer Algebra Package GAP. Computer Algebra in Scientific Computing CASC’99, 309-315. doi:10.1007/978-3-642-60218-4_24 | es_ES |
dc.description.references | Peng, T. A. (1969). Finite groups with pro-normal subgroups. Proceedings of the American Mathematical Society, 20(1), 232-232. doi:10.1090/s0002-9939-1969-0232850-1 | es_ES |
dc.description.references | Peng, T. A. (1971). Pronormality in Finite Groups. Journal of the London Mathematical Society, s2-3(2), 301-306. doi:10.1112/jlms/s2-3.2.301 | es_ES |
dc.description.references | Schmid, P. (1998). Subgroups Permutable with All Sylow Subgroups. Journal of Algebra, 207(1), 285-293. doi:10.1006/jabr.1998.7429 | es_ES |
dc.description.references | Wielandt, H. (1939). Eine Verallgemeinerung der invarianten Untergruppen. Mathematische Zeitschrift, 45(1), 209-244. doi:10.1007/bf01580283 | es_ES |
dc.description.references | Yi, X., & Skiba, A. N. (2014). On $$S$$ S -propermutable Subgroups of Finite Groups. Bulletin of the Malaysian Mathematical Sciences Society, 38(2), 605-616. doi:10.1007/s40840-014-0038-4 | es_ES |