- -

Whitney extension operators with arbitrary loss of differentiability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Whitney extension operators with arbitrary loss of differentiability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Frerick, Leonhard es_ES
dc.contributor.author Arne Jakobs es_ES
dc.contributor.author Jorda Mora, Enrique es_ES
dc.contributor.author Wengenroth, Jochen es_ES
dc.date.accessioned 2021-07-21T03:31:25Z
dc.date.available 2021-07-21T03:31:25Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 0022-247X es_ES
dc.identifier.uri http://hdl.handle.net/10251/169644
dc.description.abstract [EN] For a compact set K subset of R-d we characterize the existence of a linear extension operator E: E(K) -> C-infinity (R-d) for the space of Whitney jets E(K) with a certain loss of derivatives sigma, that is, the operator satisfies the following continuity estimates for all n is an element of N-0 and all F is an element of E(K) sup{vertical bar partial derivative(alpha) E(F)(x) : vertical bar alpha vertical bar <= n, x is an element of R-d vertical bar} <= C-n parallel to F parallel to(sigma(n)), where parallel to.parallel to(sigma(n)) denotes the Whitney norm and the map s: N-0 -> N-0 is monotonically increasing with sigma(n) >= n and sigma(0) = 0. From our main result it follows directly that if a compact set (K) over bar admits an extension operator, then it is always possible to construct a second extension operator resembling the original Whitney operators E-n: E-n (K) -> C-n(R-d) where the evaluations of the jet occurring in the Taylor polynomials are approximated by measures. (C) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship 1The research of E. Jorda was partially supported by the project MTM2016-76647-P es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Whitney extension operator es_ES
dc.subject Mityagin's problem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Whitney extension operators with arbitrary loss of differentiability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2020.124142 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Frerick, L.; Arne Jakobs; Jorda Mora, E.; Wengenroth, J. (2020). Whitney extension operators with arbitrary loss of differentiability. Journal of Mathematical Analysis and Applications. 489(1):1-13. https://doi.org/10.1016/j.jmaa.2020.124142 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jmaa.2020.124142 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 489 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\420207 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Frerick, L., Jordá, E., & Wengenroth, J. (2011). Tame linear extension operators for smooth Whitney functions. Journal of Functional Analysis, 261(3), 591-603. doi:10.1016/j.jfa.2011.04.008 es_ES
dc.description.references Frerick, L., Jordá, E., & Wengenroth, J. (2016). Whitney extension operators without loss of derivatives. Revista Matemática Iberoamericana, 32(2), 377-390. doi:10.4171/rmi/888 es_ES
dc.description.references Goncharov, A. (1996). A compact set without Markov’s property but with an extension operator for $C^∞$-functions. Studia Mathematica, 119(1), 27-35. doi:10.4064/sm-119-1-27-35 es_ES
dc.description.references Goncharov, A., & Ural, Z. (2017). Mityagin’s extension problem. Progress report. Journal of Mathematical Analysis and Applications, 448(1), 357-375. doi:10.1016/j.jmaa.2016.11.001 es_ES
dc.description.references Whitney, H. (1934). Analytic extensions of differentiable functions defined in closed sets. Transactions of the American Mathematical Society, 36(1), 63-63. doi:10.1090/s0002-9947-1934-1501735-3 es_ES
dc.description.references Tidten, M. (1979). Fortsetzungen von C?-Funktionen, welche auf einer abgeschlossenen Menge in ?n definiert sind. Manuscripta Mathematica, 27(3), 291-312. doi:10.1007/bf01309013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem