- -

Ergodic properties of composition operators on Banach spaces of analytic functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ergodic properties of composition operators on Banach spaces of analytic functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jorda Mora, Enrique es_ES
dc.contributor.author Rodríguez-Arenas, Alberto es_ES
dc.date.accessioned 2021-07-21T03:31:28Z
dc.date.available 2021-07-21T03:31:28Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 0022-247X es_ES
dc.identifier.uri http://hdl.handle.net/10251/169645
dc.description.abstract [EN] The composition operators defined on little Bloch spaces, Bergman spaces, Hardy spaces or little weighted Bergman spaces of infinite type, when well defined, are shown to be mean ergodic if and only if they are power bounded if and only if the symbol has an interior fixed point. For these operators uniform mean ergodicity is equivalent to quasicompactness in the sense of Yosida and Kakutani. (C) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship The present research was partially supported by the project MTM2016-76647-P. The second author was also partially supported by the grant PAID-01-16 of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composition operator es_ES
dc.subject Mean ergodic operator es_ES
dc.subject Uniformly mean ergodic operator es_ES
dc.subject Power bounded operator es_ES
dc.subject Bloch space,Bergman space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Ergodic properties of composition operators on Banach spaces of analytic functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2020.123891 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Jorda Mora, E.; Rodríguez-Arenas, A. (2020). Ergodic properties of composition operators on Banach spaces of analytic functions. Journal of Mathematical Analysis and Applications. 486(10):1-14. https://doi.org/10.1016/j.jmaa.2020.123891 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jmaa.2020.123891 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 486 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\420195 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Allen, R. F., & Colonna, F. (2009). On the isometric composition operators on the Bloch space in <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi mathvariant=«double-struck»>C</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math>. Journal of Mathematical Analysis and Applications, 355(2), 675-688. doi:10.1016/j.jmaa.2009.02.023 es_ES
dc.description.references Arendt, W., Chalendar, I., Kumar, M., & Srivastava, S. (2018). Asymptotic behavior of the powers of composition operators on Banach spaces of holomorphic functions. Indiana University Mathematics Journal, 67(4), 1571-1595. doi:10.1512/iumj.2018.67.7389 es_ES
dc.description.references ARENDT, W., CHALENDAR, I., KUMAR, M., & SRIVASTAVA, S. (2019). POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES. Journal of the Australian Mathematical Society, 108(3), 289-320. doi:10.1017/s1446788719000235 es_ES
dc.description.references Aron, R., & Lindström, M. (2004). Spectra of weighted composition operators on weighted banach spaces of analytic functions. Israel Journal of Mathematics, 141(1), 263-276. doi:10.1007/bf02772223 es_ES
dc.description.references Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodic composition operators on Banach spaces of holomorphic functions. Journal of Functional Analysis, 270(12), 4369-4385. doi:10.1016/j.jfa.2016.03.003 es_ES
dc.description.references Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodicity of weighted composition operators on spaces of holomorphic functions. Journal of Mathematical Analysis and Applications, 444(2), 1640-1651. doi:10.1016/j.jmaa.2016.07.039 es_ES
dc.description.references Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983 es_ES
dc.description.references Bonet, J., & Domański, P. (2011). A note on mean ergodic composition operators on spaces of holomorphic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 105(2), 389-396. doi:10.1007/s13398-011-0009-7 es_ES
dc.description.references Bonet, J., Domański, P., Lindström, M., & Taskinen, J. (1998). Composition operators between weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 64(1), 101-118. doi:10.1017/s1446788700001336 es_ES
dc.description.references Bonet, J., Galindo, P., & Lindström, M. (2008). Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions. Journal of Mathematical Analysis and Applications, 340(2), 884-891. doi:10.1016/j.jmaa.2007.09.006 es_ES
dc.description.references Bonet, J., & Ricker, W. J. (2009). Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Archiv der Mathematik, 92(5), 428-437. doi:10.1007/s00013-009-3061-1 es_ES
dc.description.references Contreras, M. D., & Hernandez-Diaz, A. G. (2000). Weighted composition operators in weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 69(1), 41-60. doi:10.1017/s144678870000183x es_ES
dc.description.references Han, S.-A., & Zhou, Z.-H. (2019). Mean ergodicity of composition operators on Hardy space. Proceedings - Mathematical Sciences, 129(4). doi:10.1007/s12044-019-0476-x es_ES
dc.description.references Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6 es_ES
dc.description.references Littlewood, J. E. (1925). On Inequalities in the Theory of Functions. Proceedings of the London Mathematical Society, s2-23(1), 481-519. doi:10.1112/plms/s2-23.1.481 es_ES
dc.description.references Lotz, H. P. (1985). Uniform convergence of operators onL ? and similar spaces. Mathematische Zeitschrift, 190(2), 207-220. doi:10.1007/bf01160459 es_ES
dc.description.references Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2 es_ES
dc.description.references Madigan, K., & Matheson, A. (1995). Compact composition operators on the Bloch space. Transactions of the American Mathematical Society, 347(7), 2679-2687. doi:10.1090/s0002-9947-1995-1273508-x es_ES
dc.description.references MacCluer, B., & Saxe, K. (2002). Spectra of composition operators on the bloch and bergman spaces. Israel Journal of Mathematics, 128(1), 325-354. doi:10.1007/bf02785430 es_ES
dc.description.references Montes-Rodríguez, A. (1999). The essential norm of a composition operator on Bloch spaces. Pacific Journal of Mathematics, 188(2), 339-351. doi:10.2140/pjm.1999.188.339 es_ES
dc.description.references Montes-Rodríguez, A. (2000). Weighted Composition Operators on Weighted Banach Spaces of Analytic Functions. Journal of the London Mathematical Society, 61(3), 872-884. doi:10.1112/s0024610700008875 es_ES
dc.description.references Wolf, E. (2011). Power Bounded Composition Operators. Computational Methods and Function Theory, 12(1), 105-117. doi:10.1007/bf03321816 es_ES
dc.description.references Yosida, K. (1938). Mean ergodic theorem in Banach spaces. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 14(8). doi:10.3792/pia/1195579607 es_ES
dc.description.references Yosida, K., & Kakutani, S. (1941). Operator-Theoretical Treatment of Markoff’s Process and Mean Ergodic Theorem. The Annals of Mathematics, 42(1), 188. doi:10.2307/1968993 es_ES
dc.description.references Zhu, K. (1993). Block Type Spaces of Analytic Functions. Rocky Mountain Journal of Mathematics, 23(3). doi:10.1216/rmjm/1181072549 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem