Mostrar el registro sencillo del ítem
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Rodríguez-Arenas, Alberto | es_ES |
dc.date.accessioned | 2021-07-21T03:31:28Z | |
dc.date.available | 2021-07-21T03:31:28Z | |
dc.date.issued | 2020-06-01 | es_ES |
dc.identifier.issn | 0022-247X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169645 | |
dc.description.abstract | [EN] The composition operators defined on little Bloch spaces, Bergman spaces, Hardy spaces or little weighted Bergman spaces of infinite type, when well defined, are shown to be mean ergodic if and only if they are power bounded if and only if the symbol has an interior fixed point. For these operators uniform mean ergodicity is equivalent to quasicompactness in the sense of Yosida and Kakutani. (C) 2020 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | The present research was partially supported by the project MTM2016-76647-P. The second author was also partially supported by the grant PAID-01-16 of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Composition operator | es_ES |
dc.subject | Mean ergodic operator | es_ES |
dc.subject | Uniformly mean ergodic operator | es_ES |
dc.subject | Power bounded operator | es_ES |
dc.subject | Bloch space,Bergman space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Ergodic properties of composition operators on Banach spaces of analytic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmaa.2020.123891 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jorda Mora, E.; Rodríguez-Arenas, A. (2020). Ergodic properties of composition operators on Banach spaces of analytic functions. Journal of Mathematical Analysis and Applications. 486(10):1-14. https://doi.org/10.1016/j.jmaa.2020.123891 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2020.123891 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 486 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\420195 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Allen, R. F., & Colonna, F. (2009). On the isometric composition operators on the Bloch space in <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi mathvariant=«double-struck»>C</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math>. Journal of Mathematical Analysis and Applications, 355(2), 675-688. doi:10.1016/j.jmaa.2009.02.023 | es_ES |
dc.description.references | Arendt, W., Chalendar, I., Kumar, M., & Srivastava, S. (2018). Asymptotic behavior of the powers of composition operators on Banach spaces of holomorphic functions. Indiana University Mathematics Journal, 67(4), 1571-1595. doi:10.1512/iumj.2018.67.7389 | es_ES |
dc.description.references | ARENDT, W., CHALENDAR, I., KUMAR, M., & SRIVASTAVA, S. (2019). POWERS OF COMPOSITION OPERATORS: ASYMPTOTIC BEHAVIOUR ON BERGMAN, DIRICHLET AND BLOCH SPACES. Journal of the Australian Mathematical Society, 108(3), 289-320. doi:10.1017/s1446788719000235 | es_ES |
dc.description.references | Aron, R., & Lindström, M. (2004). Spectra of weighted composition operators on weighted banach spaces of analytic functions. Israel Journal of Mathematics, 141(1), 263-276. doi:10.1007/bf02772223 | es_ES |
dc.description.references | Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodic composition operators on Banach spaces of holomorphic functions. Journal of Functional Analysis, 270(12), 4369-4385. doi:10.1016/j.jfa.2016.03.003 | es_ES |
dc.description.references | Beltrán-Meneu, M. J., Gómez-Collado, M. C., Jordá, E., & Jornet, D. (2016). Mean ergodicity of weighted composition operators on spaces of holomorphic functions. Journal of Mathematical Analysis and Applications, 444(2), 1640-1651. doi:10.1016/j.jmaa.2016.07.039 | es_ES |
dc.description.references | Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983 | es_ES |
dc.description.references | Bonet, J., & Domański, P. (2011). A note on mean ergodic composition operators on spaces of holomorphic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 105(2), 389-396. doi:10.1007/s13398-011-0009-7 | es_ES |
dc.description.references | Bonet, J., Domański, P., Lindström, M., & Taskinen, J. (1998). Composition operators between weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 64(1), 101-118. doi:10.1017/s1446788700001336 | es_ES |
dc.description.references | Bonet, J., Galindo, P., & Lindström, M. (2008). Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions. Journal of Mathematical Analysis and Applications, 340(2), 884-891. doi:10.1016/j.jmaa.2007.09.006 | es_ES |
dc.description.references | Bonet, J., & Ricker, W. J. (2009). Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Archiv der Mathematik, 92(5), 428-437. doi:10.1007/s00013-009-3061-1 | es_ES |
dc.description.references | Contreras, M. D., & Hernandez-Diaz, A. G. (2000). Weighted composition operators in weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 69(1), 41-60. doi:10.1017/s144678870000183x | es_ES |
dc.description.references | Han, S.-A., & Zhou, Z.-H. (2019). Mean ergodicity of composition operators on Hardy space. Proceedings - Mathematical Sciences, 129(4). doi:10.1007/s12044-019-0476-x | es_ES |
dc.description.references | Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6 | es_ES |
dc.description.references | Littlewood, J. E. (1925). On Inequalities in the Theory of Functions. Proceedings of the London Mathematical Society, s2-23(1), 481-519. doi:10.1112/plms/s2-23.1.481 | es_ES |
dc.description.references | Lotz, H. P. (1985). Uniform convergence of operators onL ? and similar spaces. Mathematische Zeitschrift, 190(2), 207-220. doi:10.1007/bf01160459 | es_ES |
dc.description.references | Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2 | es_ES |
dc.description.references | Madigan, K., & Matheson, A. (1995). Compact composition operators on the Bloch space. Transactions of the American Mathematical Society, 347(7), 2679-2687. doi:10.1090/s0002-9947-1995-1273508-x | es_ES |
dc.description.references | MacCluer, B., & Saxe, K. (2002). Spectra of composition operators on the bloch and bergman spaces. Israel Journal of Mathematics, 128(1), 325-354. doi:10.1007/bf02785430 | es_ES |
dc.description.references | Montes-Rodríguez, A. (1999). The essential norm of a composition operator on Bloch spaces. Pacific Journal of Mathematics, 188(2), 339-351. doi:10.2140/pjm.1999.188.339 | es_ES |
dc.description.references | Montes-Rodríguez, A. (2000). Weighted Composition Operators on Weighted Banach Spaces of Analytic Functions. Journal of the London Mathematical Society, 61(3), 872-884. doi:10.1112/s0024610700008875 | es_ES |
dc.description.references | Wolf, E. (2011). Power Bounded Composition Operators. Computational Methods and Function Theory, 12(1), 105-117. doi:10.1007/bf03321816 | es_ES |
dc.description.references | Yosida, K. (1938). Mean ergodic theorem in Banach spaces. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 14(8). doi:10.3792/pia/1195579607 | es_ES |
dc.description.references | Yosida, K., & Kakutani, S. (1941). Operator-Theoretical Treatment of Markoff’s Process and Mean Ergodic Theorem. The Annals of Mathematics, 42(1), 188. doi:10.2307/1968993 | es_ES |
dc.description.references | Zhu, K. (1993). Block Type Spaces of Analytic Functions. Rocky Mountain Journal of Mathematics, 23(3). doi:10.1216/rmjm/1181072549 | es_ES |